scholarly journals Soil Application of Zeolite Affects Inorganic Nitrogen, Water Soluble and Exchangeable Potassium

Author(s):  
Ch. Ravali ◽  
K. Jeevan Rao ◽  
T. Anjaiah ◽  
K. Suresh

An incubation study was conducted at college of agriculture, rajendranagar, PJTSAU to evaluate the influence of zeolite application on inorganic nitrogen, water soluble and exchangeable potassium in soil. Clinoptilolite Zeolite was fully mixed with soil (7.5 t ha-1) at the start of the experiment. Nitrogen was applied to soil through urea (200 kg ha-l). The experiment was conducted for 35 days and soil was analyzed for inorganic nitrogen, water soluble and exchangeable potassium at weekly intervals i.e., 1, 7, 14, 21, 28, 35 days of incubation. The results indicated that the treatment with zeolite application showed significantly higher ammoniacal nitrogen from day 1 (136.54 mg kg-l) to day 35 (38.71 mg kg-l) as well as nitrate nitrogen (day 1 – 59.13 mg kg-l; day 35 – 130.13 mg kg-l). Similarly water soluble (day 1 – 92.21 kg ha-l; day 35 – 103.13 kg ha-l) and exchangeable potassium (day 1 – 363.69 kg ha-l; day 35 – 393.94 kg ha-l) was also significantly higher in zeolite applied treatments. Thus, mixing of zeolite into soil improves inorganic nitrogen through reducing leaching losses and also improves water soluble and exchangeable potassium.

2012 ◽  
pp. 313-317
Author(s):  
Mária Takácsné Hájos

Quality parameters of 5 table root varieties were tested on 3 sowing dates with different cultivation methods: open field on 15 April and 9 July 2010 and under plastic tents on 19 August. The highest red pigment content (betanin) was measured in the varieties Akela and Mona Lisa (~ 80 mg 100 g-1) of the second (July) crop. This crop is in general use in Hungary. In comparison, in the late sown varieties (August, under plastics) a further pigment increase (10–20 mg 100 g-1) was observed in the same varieties as related to the earlier sowing dates. Yellow pigments (vulgaxanthins) showed similar trends. Roots of the late sowing date (with harvest in December) contained the highest vulgaxanthin values (103.3–124.18 mg kg-1).Varieties reacted differently to temperature changes during the production period and thus to sugar accumulation. In the second crop (July) higher water soluble solids content was measured on the average of varieties (10.12%) in comparison to the April sowing (7.76%). Beetroots of the spring sowing are recommended for fresh market while the second (July) crop with autumn harvest can satisfy industry requirements. Late sowing under unheated plastic tents supply us with fresh beetroot in late autumn and early winter and prolong the usability of plastic tents. Six lettuce species/subspecies were tested in the open field and under plastic tents in 3 repetitions for nitrate nitrogen, vitamin-C, polyphenol (gallus acid equivalent – mg GAE 100 g-1) and mineral element (Ca, K, Mg, Na) contents. Our measurements showed lower nitrate nitrogen values under plastic than in the open field (89.10± 8.13 and 127.06±14.29 mg kg-1) on the average of genotypes. Lettuce grown in the field had higher vitamin-C content (1.4 mg%) which is nearly 50% more than in plants under plastic. The highest polyphenol content was found in samples from the field with a conspicuous value of 804.17±56.47 mg GAE 100 g-1 in Piros cikória. Samples grown under plastic were richer in mineral elements (Ca, K, Mg, Na) which can be explained by the higher nutrient content of the soil. In this environment superior Mg content was observed in Edivia (4616.33±311.21 mg kg-1).  Besides the well- known headed lettuce, Piros cikória (Red chicory),the red leaved Lollo Rossa and Tölgylevel (Oak leaf lettuce) should bementioned which well deserve further testing in order to supply us with nourishing, healthy food. 


Author(s):  
Mesfin Kassa ◽  
Wassie Haile ◽  
fassile kebede

Quantity-intensity characteristics are among conventional approaches for studying potassium dynamics and its availability; this was assessed to determine availability in four districts: namely, Sodo Zuria, Damot Gale, Damot Sore, and Boloso Sore at three different land use type viz., enset-coffee, crop land, and grazing land. There was water soluble, ammonium acetate, nitric acid extractable potassium, exchangeable potassium, and non-exchangeable potassium studied in soil samples, which were collected from 0-20 cm depth of each land type. The study revealed that water soluble and ammonium acetate extractable potassium concentrations ranged from 0.04 to 0.42 cmolKg-1 soils enset-coffee and grazing land use types, respectively. The study showed that exchangeable potassium constituted the highest proportion of available potassium, while the proportion of water soluble potassium was found to be the lowest. In this study, non-exchangeable potassium concentrations varied from 0.10 to 0.04cmolKg-1soils for enset-coffee, and crop and grazing land use type. Furthermore, available potassium and exchangeable potassium concentrations were positively correlated with OC(r=0.95***), cation exchange capacity, and sand and clay(r=0.98***). In addition, the K dynamics as impacted by land use types found that the highest change in exchangeable potassium (0.31cmolkg-1soils) and potential buffering capacity (1.79cmolkg-1soils) were noted in crop land use types, whereas the lowest change(1.26cmolkg-1 soils) was observed in the enset-coffee system, The varying properties, potassium status, dynamic and land use type of soils identified in the study areas provided adequate information to design soil potassium management options and further research about the soil in each site. Therefore, application of site specific soil fertility management practices and research can improve soil potassium status and quantity intensity parameters to sustain crop productive soils.


1961 ◽  
Vol 41 (2) ◽  
pp. 196-206 ◽  
Author(s):  
A. J. MacLean

The amounts of exchangeable potassium in surface samples of 11 Canadian soils were significantly correlated with uptake of potassium by plants in the greenhouse. Per cent K-saturation and water-soluble potassium were indicative of the percentage of K-uptake that was derived from soil potassium in exchangeable form at the time of seeding.Amounts of non-exchangeable potassium extracted from the soils by repeated boiling in 1 N HNO3, by H-saturated exchange resin, and by continuous leaching with 0.01 N HCl were significantly correlated with each other and with the amounts of this form of potassium removed by plants.Following cropping, release of non-exchangeable potassium to exchangeable form during moist incubation of the samples for 112 days was slight. When samples containing different levels of exchangeable potassium were incubated moist for 13 months and then wetted and dried five times, potassium tended to be released to exchangeable form or converted to non-exchangeable form depending on initial level established. The degree of K-saturation at which potassium in six Ontario soils would be expected to be at equilibrium was estimated by regression to be 1.21 per cent. There was evidence that the degree of K-saturation for equilibrium in a Brown soil from Saskatchewan was at least 4.5 per cent.


2020 ◽  
Vol 161 ◽  
pp. 01103
Author(s):  
Alexey Kozhukhov ◽  
Alexander Gurin ◽  
Svetlana Rezvyakova

The article presents data on the study of the main nutrition elements in the soil under maize crops, depending on the predecessors and methods of soil treatment in the conditions of ordinary Chernozem. The object of research is a Krasnodarsky 194MV hybrid of maize. Variants: 1. Fallow arable land (control); 2. Lupine as green manure; 3. Peas as green manure; 4. Binary sowing of lupine and peas as green manure; 5. Soy as green manure. The experiment was repeated three times, field placement was randomized, and area of each was 120 m². Agrotechnics of maize cultivation in the experiment corresponded to the recommendations for this zone. Green manure was plowed in during its reproduction phase. In the variants with green mass plowing to a depth of 23–25 cm, the largest amount of nitrate nitrogen was in the soil layer 0–20 cm. In the specified soil horizon, before sowing maize, the content of nitrate nitrogen ranged, depending on the variant, from 24.7 mg/kg to 42.8 mg/kg. In the soil layer 20–40 cm, the amount of nitrogen was lower, just 19.4–29.5 mg/kg. Similar dependence was observed for maize during its flowering phase. Tillage methods had almost no effect on the accumulation of nitrate nitrogen in the upper soil layer (0–20 cm). As in all the variants, the differences in this indicator were within the experimental error. However, the content of nitrate nitrogen during the growing season was different. The greatest amount of it was observed during the spring period, both in versions with plowing to a depth of 25–28 cm and in versions with blade loosening to a depth of 10–12 cm. The smallest amount of available phosphorus, regardless of the method of soil preparation, in the layer 0–20 cm was on fallow arable land – 122 mg/kg during the sowing period and 104 mg/kg during the flowering period. In variants with cultivation of legumes as green manure, the content of available phosphorus in the specified horizon was significantly chigher, being 147–171 mg/kg. The highest content of exchangeable potassium was provided by lupine – 209–213 mg/kg in the 0–20 cm soil layer, and lupine sown together with peas – 196–207 mg/kg. The minimum amount of exchangeable potassium was 143–146 mg/kg in fallow arable land, depending on the method of soil treatment.


2015 ◽  
Vol 4 (1) ◽  
pp. 73
Author(s):  
Ogundare S. K. ◽  
Mohammed S. A. ◽  
Owolabi J. F.

Experiments were carried out at the student’s experimental field, Kabba College of Agriculture, Horticulture section to examine the effect of soil application of cow dung combined with foliar application of boost extra on growth and yield of okra in an ultisol, Nigeria. The land was ploughed each year and harrowed with the aid of tractor mounted implements. The experiment was laid out in a randomized complete block design (RCBD). The treatments consisted of A = 3t/ha cow dung, B = 1.0 L/ha foliar + 2.5t/ha cow dung, C =1.5L/ha foliar + 2t/ha cow dung, D    = 2 L/ha foliar      + 1.5 t/ha cow dung, E = 2.5L/ha foliar + 1.0t/ha cow dung, F = 3t/ha foliar. Each year experiment was conducted using a single field having dimension of 35 by 14m which was laid out into three blocks with 1m guard row between blocks. Each block consists of six plots (5 by 4m) and 1m guard row between plots. Cow dung manure was applied a week before planting. Okra variety Lady’s finger was used. Three seeds per hole were planted on April 4th in both years on the flat with a spacing of 60cm x 25cm between and within the rows and later thinned to one plant per stand. Data taken included plant height at 50 % flowering, number of branches per plant, leaf area, pod length, pod diameter, number of pods per plant; and pod weight and yield (t/ha). The data were subjected to Analysis of Variance (ANOVA) while the Least Significant Difference (LSD) was used to separate treatment means. The result shows that plot treated with 2.0L/ha foliar + 1.5 t/ha cow dung had the best performance in yield and yield components in this study. It is therefore recommended that okra farmers should integrated foliar fertilizer (boost extra) at the rate of 2L per hectare with cow dung at rate of 1.5t per hectare be used for okra production in the study area.


2003 ◽  
Vol 54 (1) ◽  
pp. 27 ◽  
Author(s):  
P. R. Stork ◽  
P. H. Jerie

Two field trials were established to evaluate the ability of perennial grasses to recoup leaching losses of nitrogen in orchards. A perennial grass was considered suitable for use in orchards if it had a winter active–summer dormant growth cycle. High winter growth would ensure de-watering of the soil profile and nitrate uptake during this period, when an orchard is most vulnerable to leaching losses of nitrate. Low growth in summer would minimise competition for water and nutrients with fruit trees. These traits were studied in 14 varieties of grasses from 8 species in an open field and in an established apricot orchard. Semi-dormant summer growth was observed in species such as Dactylis glomerata L. cv. Kasbah, and Festuca arundinacea L. cv. MK88931. In the open field trial, the sequestration of NO3–-N + NH4+-N between late autumn and early spring, by Kasbah and MK88931, was estimated at 172 and 220 kg N/ha, respectively. Kasbah and MK88931 also demonstrated the driest soil profiles to a depth of 1.5 m in this period. This reflected their high water use and de-watering potential. Therefore, the performance of these grasses demonstrated a model approach to mitigate nitrate leaching below orchard root-zones. They could minimise deep percolation of rainfall and sequestered large amounts of inorganic nitrogen in soil during winter, whilst producing low growth during summer.


1960 ◽  
Vol 11 (5) ◽  
pp. 750
Author(s):  
AM Graley ◽  
KD Nicholls ◽  
CS Piper

The potassium status of Frodsley sandy loam and some associated soils from the Fingal district, north-eastern Tasmania, has been investigated. Regularly spaced sampling of surface soils on a rectilinear grid pattern disclosed a variability of exchangeable potassium values in the field much greater than recorded for soils elsewhere; even for 3-ft spacings there was a sevenfold range. The need for adequate sampling of experimental areas is stressed. The median value for exchangeable potassium in the A1 horizon of Frodsley sandy loam was 0.31 m-equiv./100 g for "developed" areas and 0.35 m-equiv./100 g for "undeveloped" areas. Values for the A2 horizon were closely correlated with those for the corresponding surface horizon, but only about one-third as high. The amounts in the B horizon tended to approximate to those in the A1 horizon except for soils with high values in the surface. The potassium-supplying capacity of the soils was assessed by fractionation of the potassium into water-soluble, exchangeable, difficultly exchangeable, hydrochloric acid-soluble, and total potassium. In Frodsley sandy loam approximately 35 per cent. of the exchangeable potassium appeared in the water-soluble form, which suggested that there may be moderate losses from this soil by leaching. Ten minutes' boiling with normal nitric acid released only about 90 per cent. more potassium than was present in the exchangeable fraction. Boiling normal nitric acid extracted much less potassium from some samples of this soil type than did cold normal ammonium chloride from others, because of the great variability of exchangeable potassium. Concentrated hydrochloric acid dissolved a further 0.60.7 m-equiv./100 g on the average. These low values for the two latter fractions are taken to indicate the poverty of this soil type in reserves of potassium and, with the relatively low values for the exchangeable fraction, explain the widespread responses to potassium reported in field experiments. Examination of the minerals of the clay fraction of Frodsley sandy loam supported the chemical data in regard to the poor potassium status of these soils. Separation of sand, silt, and clay from the B horizons of two profiles showed that much of the total potassium was present in the coarser fractions of the soil. Type A, a soil associated with Frodsley sandy loam on river terraces, had a similar potassium status. Soils formed on dolerite were significantly higher in all categories of potassium.


1959 ◽  
Vol 39 (2) ◽  
pp. 129-135 ◽  
Author(s):  
R. L. Halstead ◽  
H. B. Heeney

In 33 field trials on soils varying in texture from sandy loam to clay loam in Prince Edward County, Ontario, exchangeable potassium, per cent potassium saturation, and water-soluble potassium were significantly correlated with yield response of tomatoes to potassium fertilizer on the sandy loam soils, but there was no correlation within the loam and clay loam groups. The mean c1 value in the modified Mitscherlich equation relating exchangeable potassium to yield response within the sandy loam group was 0.00555 and the coefficient of variation was 19.8 per cent. The corresponding coefficients for c1 values based on per cent potassium saturation and water-soluble potassium were of greater magnitude. The amounts of potassium soluble in boiling 1 N HNO3 were not related to yield response.Exchangeable potassium and the non-exchangeable form soluble in boiling 1 N HNO3 increased, whereas water-soluble potassium decreased with increasing clay content of the samples. Water-soluble potassium was significantly correlated with per cent potassium saturation within the sandy loam and loam groups.


1975 ◽  
Vol 55 (3) ◽  
pp. 391-402 ◽  
Author(s):  
W. R. ALLEN ◽  
K. R. STEVENSON

The results of three experiments to study various aspects of, and treatments to improve the preservation of, wet brewers’ grain are reported. In the first experiment, brewers’ grains were sampled in a brewery from the lauter tub and holding tanks. Material from the holding tanks was also ensiled in test-tube silos and sampled at various time intervals during the 18-day study. All samples were analyzed for lactobacillus growth, organic acid and ammoniacal nitrogen content and buffering capacity. Water soluble and total non-structural carbohydrate were determined for material sampled from six separate brews. No lactobacilli were isolated from the grains sampled in the lauter tub; however, lactic acid bacteria were evident in samples from the holding tanks. The lactobacillus population increased sharply during the first 2 days of ensiling, followed by a decline over the remaining 16 days of the experiment. The results of the 18-day study suggested that a silage additive would assist in satisfactory ensiling of wet brewers’ grains. The second and third experiments were designed to study the effects of various treatments on the preservation of brewers’ grains under long-term anaerobic storage conditions. In the second experiment, the 23-liter laboratory silos were ineffective in simulating actual horizontal silo conditions in the time period allocated to the study. The lack of similarity may be related to the cool temperatures under which the laboratory silos were stored. In the third experiment, 160-ml test-tube silos were used. The control silage was poorly preserved, containing high levels of acetic and butyric acid and ammoniacal nitrogen. The material treated with both rates (0.50 and 0.75%) of formic acid and the high rate (0.75%) of the formic–propionic mixture was well preserved. The addition of molasses, although inhibiting butyric acid production, was ineffective in controlling ammoniacal nitrogen production.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Pushpa C Tomar

Foliar Application seems to be an upcoming and ongoing research area especially in the field of agriculture. This is been in practice in various parts of the world and proved its positive results in its field [1,2]. Foliar application can be explained as spraying the suitable fertilizer solution (condition is, that it should be water soluble) on the surface of the leaves of growing plants [3]. This practice not only saves quantity of fertilizer used but also improves the uptake of a particular micronutrient by the crops and boosts the yield too. Interaction between crop’s genetic potential and the environment in which it grows is detrimental for the yield of a crop [4]. Soil application of nitrogen is a conventional method to supply nitrogen to plants and for improvement in any field adhering to the old ways will not be a better option [4]. In some instances, the availability of urea becomes inadequate for the farmers at sowing time. In such situation the foliar application of plant nutrient is effective and economical for some crops [5]. It has been shown in some studies that uptake of micronutrients directly from plants is more rapid and quicker for better results in yields than soil application[1]. As mentioned above, that the fertilizer should be water soluble for foliar spray and moreover, it should also be noted that the particular crop plant also should be suitable for aerial spray. The best results of foliar application also depends on the soil condition as if soil conditions are unfavourable when micronutrients are needed, it may be desirable to make foliar applications of the plant nutrients


Sign in / Sign up

Export Citation Format

Share Document