scholarly journals RESPONSE OF SEADYKES DUE TO WAVE IMPACTS

1976 ◽  
Vol 1 (15) ◽  
pp. 149 ◽  
Author(s):  
A. Fuhrboter ◽  
H.H. Dette ◽  
J. Grune

Damages on seadykes and revetments are mainly caused by wave impacts due to breaking waves. These impact forces act on small areas for a very short time and cause crater-like formations, when the forces are transmitted instantaneously to the side-walls of cracks in the cover of dykes or through joints into and below revetments. In this paper the results of investigations on impact forces are presented. A comparison of field data and laboratory data proves considerable differences, which must be explained mainly by the different air entrapment for prototype and small-scale conditions in the breaking waves. Both the data from field and small-scale model emphasize, that the slope of the dyke or revetment is responsible at first for frequency and magnitude of the impact forces. Furthermore the effect of impact forces is demonstrated by the results of investigations on the stability of stone revetments with joints.

Author(s):  
Travis J. Watts ◽  
Jerry G. Rose ◽  
Ethan J. Russell

A series of specially designed granular material pressure cells were precisely positioned directly below the rail at the tie/ballast interface to measure typical interfacial pressures exerted by revenue freight trains. These vertical pressures were compared to the recorded wheel/rail nominal and peak forces for the same trains traversing nearby mainline wheel impact load detectors (WILDs). The cells were imbedded within the bottom of new wood ties so that the surfaces of the pressure cells were even with the bottoms of the ties and the underlying ballast. The cells were inserted below consecutive rail seats of one rail to record pressures for a complete wheel rotation. The stability and tightness of the ballast support influenced the magnitudes and consistencies of the recorded ballast pressures. Considerable effort was required to provide consistent ballast conditions for the instrumented ties and adjacent undisturbed transition ties. Norfolk Southern (NS) crews surfaced and tamped through the test section and adjacent approach ties. This effort along with normal accruing train traffic subsequently resulted in reasonably consistent pressure measurements throughout the test section. The impact ratio (impact factor) and peak force values recorded by the WILDs compared favorably with the resulting magnitudes of the transferred pressures at the tie/ballast interface. High peak force and high impact ratio WILD readings indicate the presence of wheel imperfections that increase nominal forces at the rail/wheel interface. The resulting increased dynamic impact forces can contribute to higher degradation rates for the track component materials and more rapid degradation rates of the track geometry. The paper contains comparative WILD force measurements and tie/ballast interfacial pressure measurements for loaded and empty trains. Typical tie/ballast pressures for locomotives and loaded freight cars ranges from 20 to 30 psi (140 to 210 kPa) for smooth wheels producing negligible impacts. The effect of increased wheel/rail impacts and peak force values on the correspondingly transmitted pressures at the tie/ballast interface is significant, with increased pressures of several orders of magnitude compared to nominal impact forces from wheels.


Author(s):  
Richard Villavicencio ◽  
Young-Hun Kim ◽  
Sang-Rai Cho ◽  
C. Guedes Soares

Numerical simulations are presented, on the dynamic response of a one-tenth scaled tanker double hull structure struck laterally by a knife edge indenter. The small stiffeners of the full-scale prototype are smeared in the small-scale model by increasing the thicknesses of the corresponding plates. The dynamic response is evaluated at an impact velocity of 7.22 m/s and the impact point is chosen between two frames to assure damage to the outer shell plating and stringers. The simulations are performed by LS-DYNA finite element solver. They aim at evaluating the influence of strain hardening and strain rate hardening on the global impact response of the structure, following different models proposed in the literature. Moreover, the numerical model is scaled to its full-scale prototype, summarizing the governing scaling laws for collision analysis and evaluating the effect of the material strain rate on the plastic response of large scaled numerical models.


Author(s):  
Giuseppina Palma ◽  
Sara Mizar Formentin ◽  
Barbara Zanuttigh

This paper is focused on the analysis of the impact process at dikes with crown walls and parapets under breaking and non-breaking waves. A small-scale laboratory campaign was performed at the Hydraulic Laboratory of Bologna. The experiments were aimed to analyze the vertical pressure distribution along the crown wall and the resulting wave forces, by varying geometrical and hydraulic parameters. The tested configurations included different off-shore slopes, dike crest widths, crown-wall heights, dike crest freeboards and the inclusion of the parapet. The measurements were combined with the image analysis of the run-up and of the wave impact process. A sub-set of the experiments was numerically reproduced, with the openFOAM modelling suite, to support and to extend the experimental results. The results confirmed the link between the air content, the shape and the magnitude of the pressures according to the breaker type, already observed for larger-scale experiments.


Author(s):  
T. T. Nebozhenko

The economic behavior of business structures in agriculture directly depends on the organization of their cooperation in the economic activity process. The aim of the article is to study the features of modern economic behavior of agricultural producers in Ukraine. To do this, the author identified the distribution factors of organizational and legal forms of agricultural production by economic behavior type, as well as organizational and legal features of individual models of economic behavior of agricultural production in Ukraine. Materials of thematic scientific publications, as well as empirical methods (observation and comparison) and theoretical methods (analysis and synthesis, modeling) were used to highlight the features of the object of study. The influence of the oligarchic model of the national economy of Ukraine on the structural transformation of agricultural production entities in the form of subordination of the interests of the state to the interests of individual social groups and the low effectiveness of antitrust legislation is investigated. The author found that in Ukraine the dual structure of agricultural entities was formed, in which two models of their economic behavior were simultaneously developing. The corporate model is represented by large commodity production of agricultural products based on utilization of the resource potential of the reorganized collective agricultural enterprises. Individual small-scale model is presented in agricultural production using the resource potential of private households and farms. The author found out that the organizational and legal forms of agricultural business entities will be determined by their participation in the contract system, the feasibility of cooperation or their integration. Prospects for further research in this area are a comparative analysis of the role of behavioral economy in the economic growth of organizational forms of agricultural producers in Ukraine, as well as assessing the impact of innovative technologies on the evolution of management approaches in the agricultural sector.


Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 240-248
Author(s):  
Mohammad Nurul Islam

Construction of civil engineering structures on or next to a slope requires special attention to meet the bearing capacity requirements of soils. In this paper, to address such a challenge, we present laboratory-scale model tests to investigate the effect of footing shape on the sloped surface. The model comprised of a well stiffened mild steel box with three sides fixed and one side open. We considered both with and without reinforcement to assess the effectiveness of reinforcement on the sloped surface. Also, we used three types of footing (i.e., square, rectangular, and circular) to measure the footing shape effects. We considered three different slope angles to evaluate the impact of the sloped face corresponding to the applied load and the reinforcement application. We obtained that the maximum load carrying capacity in the square footing was higher than the rectangular and the circular footing for both the reinforced and the unreinforced soil. With the increase of geo-reinforcement in all three footing shapes and three sloped angles, the load carrying capacity increased. We also noticed a limiting condition in geo-reinforcement placement effectiveness. And we found that with the increase of slope, the load bearing capacity decreased. For a steep slope, the geo-reinforcement placement and the footing shape selection is crucial in achieving the external load sustainability, which we addressed herein.


Author(s):  
Gu¨nther F. Clauss ◽  
Sverre K. Haver ◽  
Mareike Strach

To predict the characteristic impact pressure due to breaking waves on platform columns corresponding to an annual exceedence probability of 10−4 model test data with the Sleipner A gravity based structure (GBS) are subjected to a stochastic analysis. The analysis is based on the environmental contour line approach. In addition, the procedure recommended by Det Norske Veritas (DNV) for calculating shock pressures due to breaking waves is used for comparison. Time histories of pressure and wave elevation for the most severe measured impacts show that the measured pressures are induced by breaking waves. However, a difference between the resulting characteristic impact pressures based on the two approaches can be observed: The stochastic analysis results in much higher pressures than the approach recommended by DNV. These findings are supported by the analysis of data that were collected during model tests with the Gjo̸a semi-submersible and the Snorre A tension leg platform (TLP), where the difference between the results was rather large as well. For the semi-submersible and the TLP, one reason for the difference is bias in the fitment of the stochastic model. Furthermore, dynamic amplification effects in the force sensors have to be considered. However, this bias is less significant for the GBS and dynamic amplification effects are not present since different force sensors were used. For all three model tests, an important source for the different impact pressures is the size of the force sensor area, which varies between 2.25m2 and 10.89m2. Large areas may smoothen the pressure whereas small areas are overrating the impact. Further model testing is required to clarify this effect. If the difference is still present, the recommendation of DNV has to be altered to ensure a reliable prediction of the characteristic impact loads.


Author(s):  
Saeid Kazemi ◽  
Atilla Incecik

An experimental study for predicting the air gap and potential deck impact of a floating offshore structure is the main topic of this research. Numerical modeling for air gap prediction is particularly complicated in the case of floating offshore structures because of their large volume, and the resulting effects of wave diffraction and radiation. Therefore, for new floating platforms, the model tests are often performed as part of their design process. This paper summarizes physical model tests conducted on a semi-submersible model, representing a 1-to-100 scale model of a GVA4000 class, “IRAN-ALBORZ”, the largest semi-submersible platform in the Caspian Sea, under construction in North of Iran, to evaluate the platform’s air gap at different locations of its deck and also measure the impact forces in case of having negative air gap. The model was tested in regular waves in the wave tank of Newcastle University. The paper discusses the experimental setup, test conditions, and the resulting measurements of the air gap and the wave impact forces by using eight wave probes and three load cells located at different points of the lower deck of the platform.


Author(s):  
Joseph Katz ◽  
CJ Beegle-Krause ◽  
Michel Boufadel ◽  
Marcelo Chamecki ◽  
Vijay John ◽  
...  

Abstract A series of GOMRI-sponsored experimental and computational studies have discovered, elucidated and quantified the impact of small-scale processes on the dispersion, transport and weathering of crude oil slicks and subsurface plumes. Physical interfacial phenomena occurring at micron-scales include the formation of particle-stabilized emulsions, penetration of particles into oil droplets, formation of compound water-containing oil droplets during plume breakup, and the mechanisms affecting the breakup of oil into micro-droplet by tip streaming resulting from the drastic reduction in interfacial tension upon introduction of dispersant. Efforts aimed at development targeted delivery of surfactants have introduced solvent-free halloysite nanotubes that can be filled with surfactants, and preferentially released at oil-water interface. Buoyant surfactant-based gels, which enhance their encounter rates with oil slicks and adhere to weathered oil have also been developed. Studies of oil-bacteria interactions during early phases of biodegradation and shown how the bacteria, some highly active, attach to the oil-water interfaces and form complex films. Clay-decorated droplets sequester these bacteria and promote the propagation of these biofilm. Long extracellular polymeric substance (EPS) streamers generated by these biofilms form connected networks involving multiple droplets and debris, as well as increase the drag on the oil droplets. At 0.01–10 m scales, the generation of subsurface and airborne crude oil droplets by breaking waves, subsurface plumes and raindrop impact have been quantified. For waves, premixing the oil with dispersant reduces the droplets sizes to micron- and submicron-scales, and changes the slope of their size distribution. Without dispersant, the droplet diameters can be predicted based on the turbulence scales. With dispersant, the droplets are much smaller than the turbulence scales owing to the abovementioned tip-streaming. Aerosolization of oil is caused both by the initial splash and by subsequent bubble bursting, as entrained bubbles rise to the surface. Introduction of dispersant increases the airborne nano-droplet concentration by orders of magnitude, raising health questions. Dispersant injection also reduces the size of droplets in subsurface plumes, affecting the subsequent dispersion of these plume by currents and turbulence. Advancements have also been made in modeling of dissolution of oil in plumes, as well as in applications of Large Eddy Simulations (LES) to model plumes containing oil droplets and gas bubbles. The new multiscale framework, which accounts for the droplet size distribution and mass diffusion, can simulate the near- and far-fields of plumes, and predict the effect of vertical mixing promoted by turbulence on the transport of dispersed oil.


Author(s):  
Maximilian Streicher ◽  
Andreas Kortenhaus ◽  
Corrado Altomare ◽  
Steven Hughes ◽  
Krasimir Marinov ◽  
...  

Abstract Overtopping bore impact forces on a dike mounted vertical wall were measured in similar large-scale (Froude length scale factor 1-to-4.3) and small-scale (Froude length scale factor 1-to-25) models. The differences due to scale effects were studied, by comparing the up-scaled force measurements from both models in prototype. It was noted that if a minimum layer thickness, velocity of the overtopping flow and water depth at the dike toe were maintained in the small-scale model, the resulting differences in impact force due to scale effects are within the range of differences due to non-repeatability and model effects.


Author(s):  
Vipin Chakkurunni Palliyalil ◽  
Panneer Selvam Rajamanickam ◽  
Mayilvahanan Alagan Chella ◽  
Vijaya Kumar Govindasamy

The main objective of the paper is to investigate wave impact forces from breaking waves on a monopile substructure for offshore wind turbine in shallow waters. This study examines the load assessment parameters relevant for breaking wave forces on a vertical circular cylinder subjected to breaking waves. Experiments are conducted in a shallow water flume and the wave generation is based on piston type wave maker. The experiments are performed with a vertical circular cylinder with diameter, D = 0.20m which represents a monopile substructure for offshore wind turbines with regular waves of frequencies around 0.8Hz. The experimental setup consists of a 1/10 slope followed by a horizontal bed portion with a water depth of 0.8m. Plunging breaking waves are generated and free surface elevations are measured at different locations along the wave tank from wave paddle to the cylinder in order to find the breaking characteristics. Wave impact pressures are measured on the cylinder at eight different vertical positions along the height of the cylinder under breaking waves for different environmental conditions. The wave impact pressures and wave surface elevations in the vicinity of the cylinder during the impact for three different wave conditions are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document