scholarly journals COMPARISON OF MODEL AND OBSERVED NEARSHORE CIRCULATION

1978 ◽  
Vol 1 (16) ◽  
pp. 46 ◽  
Author(s):  
James H. Allender ◽  
John D. Ditmars ◽  
Wyman Harrison ◽  
Robert A. Paddock

Results from a two-dimensional numerical model for nearshore circulation induced by waves and wind are compared with observations made during two storms at a beach on Lake Michigan. Model-input data include bathymetry, offshore wave characteristics, wind histories, and local water-level changes. The predicted locations of the breaker zone are in rough accord with those observed during the storms. Data for comparison with model results consist of wave and current observations across the surf zone, especially those acquired by using a towed, instrumented sled. The comparisons show that the model often predicts peak currents near the breaker zone quite well, but underestimates the decay of wave height and the strength of longshore currents across the surf zone. Wave breaking on the bar-trough beach structure prevalent in this study apparently is not well represented by the model. An improved breaking criterion, treatment of breaking waves as traveling bores, and inclusion of horizontal mixing of momentum might add to better simulation of surf-zone currents.

1988 ◽  
Vol 1 (21) ◽  
pp. 46
Author(s):  
Scott L. Douglass ◽  
J. Richard Weggel

The influence of wind on nearshore breaking waves was investigated in a laboratory wave tank. Breaker location, geometry, and type depended upon the wind acting on the wave as it broke. Onshore winds tended to cause waves to break earlier, in deeper water, and to spill: offshore winds tended to cause waves to break later, in shallower water, and to plunge. A change in wind direction from offshore to onshore increased the surf zone width by up to 100%. Wind's effect was greatest for waves which were near the transition between breaker types in the absence of wind. For onshore winds, it was observed that microscale breaking can initiate spilling breaking by providing a perturbation on the crest of the underlying wave as it shoals.


2016 ◽  
Vol 858 ◽  
pp. 354-358
Author(s):  
Tao You ◽  
Li Ping Zhao ◽  
Zheng Xiao ◽  
Lun Chao Huang ◽  
Xiao Rui Han

Within the surf zone which is the region extending from the seaward boundary of wave breaking to the limit of wave uprush, breaking waves are the dominant hydrodynamics acting as the key role for sediment transport and beach profile change. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave transformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and set down and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height variation caused by the wave breaking and the bottom friction, and about the wave breaking criterion under regular and irregular breaking waves. Flume experiments relating to the regular and irregular breaking wave height distribution across the surf zone were conducted to verify the theoretical model. The agreement is good between the theoretical and experimental results.


1982 ◽  
Vol 1 (18) ◽  
pp. 102 ◽  
Author(s):  
Robert L. Wiegel

This paper consists of three parts. The first part presents a method for analyzing the forces exerted by breaking waves on a cirular pile. The force consists of two components, a slowly varying force and a much larger but very short duration quasi-impact force (probably of the order of 1/100 of a second). The second part is concerned with breaker characteristics, with emphasis being given to the few field data that have been measured. The third part consists of a presentation of some available data on surf zone bottom profile variations with time. Information on all three of these parts is needed for the proper design of a pile supported structure in the surf zone. If the bottom along the site of a proposed pier is sand, an estimate of the variability with time of the profile must be made. The effect of bottom depth and configuration on the height of waves moving shoreward, and the effect of this, in turn, on the wave loading is important in the calculations of wave-induced moments about the bottom. The ability of the structure to withstand these horizontal loads depends in part upon the depth of penetration of the piles. If the bottom varies with time, then calculations of wave characteristics and wave-induced loads on the piles should be made for appropriate bottom configurations.


Author(s):  
Brecht Devolder ◽  
Peter Troch ◽  
Pieter Rauwoens

The surf zone dynamics are governed by important processes such as turbulence generation , nearshore sediment transport , wave run-up and wave overtopping at a coastal structure. During field observations , it is very challenging to measure and quantify wave breaking turbulence . Complementary to experimental laboratory studies in a more controlled environment , numerical simulations are highly suitable to understand and quantify surf zone processes more accurately. In this study, wave propagation and wave breaking over a fixed barred beach profile is investigated using a two­ phase Navier-Stokes flow solver. We show that accurate predictions of the turbulent two-phase flow field require special attention regarding turbulence modelling. The numerical wave flume is implemented in the open­ source OpenFOAM library. The computed results (surface elevations , velocity profiles and turbulence levels) are compared against experimental measurements in a wave flume (van der A et al., 2017) .


2019 ◽  
Vol 863 ◽  
pp. 876-892
Author(s):  
Alexei A. Mailybaev ◽  
André Nachbin

Considering two-dimensional potential ideal flow with a free surface and finite depth, we study the dynamics of small-amplitude and short-wavelength wavetrains propagating in the background of a steepening nonlinear wave. This can be seen as a model for small ripples developing on the slopes of breaking waves in the surf zone. Using the concept of wave action as an adiabatic invariant, we derive an explicit asymptotic expression for the change of ripple steepness. Through this expression, nonlinear effects are described using the intrinsic frequency and intrinsic gravity along Lagrangian (material) trajectories on a free surface. We show that strong compression near the tip on the wave leads to an explosive ripple instability. This instability may play an important role in the understanding of fragmentation and whitecapping at the surface of breaking waves. Analytical results are confirmed by numerical simulations using a potential theory model.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2561 ◽  
Author(s):  
Xuefeng Zou ◽  
Liangsheng Zhu ◽  
Jun Zhao

Coastal plants can significantly dissipate water wave energy and services as a part of shoreline protection. Using plants as a natural buffer from wave impacts remains an attractive possibility. In this paper, we present a numerical investigation on the effects of the emerged vegetation on non-breaking, breaking and broken wave propagation through vegetation over flat and sloping beds using the Reynolds-average Navier-Stokes (RANS) equations coupled with a volume of fluid (VOF) surface capturing method. The multiphase two-equation k-ω SST turbulence model is adopted to simulate wave breaking and takes into account the effects enhanced by vegetation. The numerical model is validated with existing data from several laboratory experiments. The sensitivities of wave height evolution due to wave conditions and vegetation characteristics with variable bathymetry have been investigated. The results show good agreement with measured data. For non-breaking waves, the wave reflection due to the vegetation can increase wave height in front of the vegetation. For breaking waves, it is shown that the wave breaking behavior can be different when the vegetation is in the surf zone. The wave breaking point is slightly earlier and the wave height at the breaking point is smaller with the vegetation. For broken waves, the vegetation has little effect on the wave height before the breaking point. Meanwhile, the inertia force is important within denser vegetation and is intended to decrease the wave damping of the vegetation. Overall, the present model has good performance in simulating non-breaking, breaking and broken wave interaction with the emerged vegetation and can achieve a better understanding of wave propagation over the emerged vegetation.


Author(s):  
Zhangping Wei ◽  
Robert A. Dalrymple

This study investigates surf zone wave heating due to the dissipation of breaking wave energy by using the Smoothed Particle Hydrodynamics method. We evaluate the surf zone wave heating by examining the increase of internal energy of the system, which is computed based on the conservation of energy. The equivalent temperature profile is calculated based on a simple conversion relationship between energy and temperature. We first examine the surf zone wave heating based on long-crested wave breaking over a planar beach, and we consider spilling breaker and weakly plunging breaker. Numerical results show that breaking of water waves in the surf zone increases the internal energy of water body. Furthermore, the dissipation of incident wave energy is fully converted into the internal energy in a thermally isolated system, confirming the energy conservation of the present numerical approach. It is further found that the long-crested wave breaking generates undertow, which transports the generated wave heating from the surf zone to deep waters. We further carry out numerical experiments to examine surf zone wave heating due to short-crested wave breaking over a beach. The internal energy generation mainly follows the isolated wave breakers, and there is a 3D pattern of wave heating due to the complicated wave breaking process and current system. In general, the magnitude of the generated internal energy or temperature by dissipation of breaking wave energy in the surf zone is relatively small. The present study shows that the generated water temperature is in the order of 10^-3 Kelvin for wave breaking over a typical coastal beach.


Author(s):  
Chi Zhang ◽  
Yuan Li ◽  
Yu Cai ◽  
Jian Shi ◽  
Jinhai Zheng

Phase-averaged parametric wave models have been widely used to predict nearshore wave height transformation. The performance of parametric models depends significantly on the wave breaker index (), which controls the amount of breaking energy dissipation. Previous parameterizations improved the model predictability by considering the breaker index as a tunable coefficient, while made less effort to the physical interpretation for the proposed formulas. Indeed, inconsistency from the physical perspectives might exist. Therefore, the parameterization of still requires further investigation by considering the comprehensive influences of the offshore wave parameters and the local water depth, as well as the possible relationships with the breaker type and the surf zone state.


Author(s):  
Yeulwoo Kim ◽  
Ryan C. Mieras ◽  
Zhen Cheng ◽  
Tian-Jian Hsu ◽  
Jack A. Puleo

Wave-driven sediment transport is one of the main drivers of beach morphodynamics. However, the creation of a comprehensive numerical model remains to be a challenging task due to complex mechanisms associated with unsteadiness and free-surface effects. Particularly for highly non-linear and skewed-asymmetric breaking waves, the boundary layer approximation (i.e., assuming horizontal pressure gradient is equal to local free-stream acceleration) is questionable. Moreover, wave-breaking-induced turbulence may approach the bed and further enhance sediment transport. Thus, a numerical model that can resolve the entire water column from the bottom boundary layer to the free-surface can be a powerful tool to understand wave-driven sediment transport.


2011 ◽  
Vol 1 (32) ◽  
pp. 20 ◽  
Author(s):  
Christopher Daly ◽  
Dano Roelvink ◽  
Ap Van Dongeren ◽  
Jaap Van Thiel de Vries ◽  
Robert McCall

The effect of short wave breaking on low frequency waves is investigated using two breaker formulations implemented in a time-dependent numerical model (XBeach): (1) an advective-deterministic approach (ADA) and (2) the probabilistic breaker formulation of Roelvink (1993). Previous research has shown that the ADA breaker model gives different results for the cross-shore pattern of the fraction of breaking waves, which is now shown to affect not only the short wave height but also the short wave groupiness. While RMS short wave heights are comparable to measurements using both breaker models, the ADA breaker model allows higher levels of short wave groupiness into the surf zone. It is shown that this acts as an additional forcing mechanism for low frequency waves in the shoaling and nearshore zone, which, in addition to greater levels of breaking, leads to higher values of wave set-up. These findings are dependent on the complexity of the local bathymetry. For a plane slope, the differences in the low frequency wave heights and set-up predicted by both breaker models are negligible. Where arbitrary breakpoints are present in the field of wave propagation, such as nearshore bars or reefs, the ADA model predicts higher localized set-up, indicative of greater flow over such features. Differences are even more pronounced when the incident wave regime is highly energetic.


Sign in / Sign up

Export Citation Format

Share Document