scholarly journals Simulation Study of a Membrane Reactor for Ultrapure Hydrogen Recovery from Methanol Steam Reforming Reaction under Periodic Steady-State

Author(s):  
Lemnouer Chibane

Steam reforming of methanol over Cu/ZnO/Al2O3 catalyst was theoretically studied under created unsteady state. A mathematical approach was proposed to evaluate the effect of periodic inputs on reactor performance. The efficacy of the periodic separating reactor in term of pure hydrogen and of methanol conversion was measured during the reaction of methanol steam reforming. The obtained results showed that under certain operating conditions the periodic operation can be used advantageously to increase the reactor ability up to a level higher than the maximal steady-state. Moreover, our findings showed that the pumping of hydrogen through the membrane was stimulated by the effect of periodic operations. The predicted results suggested that the created unsteady state mode by using a square wave function could give the better performances compared to the sinusoidal mode. Copyright © 2018 BCREC Group. All rights reservedReceived: 15th July 2017; Revised: 26th November 2017; Accepted: 8th December 2017; Available online: 11st June 2018; Published regularly: 1st August 2018How to Cite: Chibane, L. (2018). Simulation Study of a Membrane Reactor for Ultrapure Hydrogen Recovery from Methanol Steam Reforming Reaction under Periodic Steady-State. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 275-285 (doi:10.9767/bcrec.13.2.1340.275-285) 

2010 ◽  
Vol 156 (3-4) ◽  
pp. 254-260 ◽  
Author(s):  
Sandra Sá ◽  
José M. Sousa ◽  
Adélio Mendes

2016 ◽  
Vol 11 (1) ◽  
pp. 51-55 ◽  
Author(s):  
K. Ghasemzadeh ◽  
R. Zeynali ◽  
F. Ahmadnejad ◽  
A. A. Babalou ◽  
A. Basile

Abstract The main purpose of present study is the analysis of dense palladium membrane reactor (MR) performance during ethanol steam reforming (ESR) reaction using computational fluid dynamic (CFD). To this aim, a two-dimensional and isothermal model based on CFD method was developed and results validation was tested by our experimental data achieved in ITM-CNR of Italy. In this work, Pd-based MR modeling was performed by using COMSOL-MULTIPHYSICS software. Regarding to model validation results, a good agreement was found between CFD model results and experimental data. Moreover, in this study, the effects of the some important operating parameters (reaction temperature and pressure) on the performance of Pd-based MR was studied in terms of ethanol conversion and hydrogen recovery. Concerning to simulation results, the CFD model presented velocity and pressure profiles in both side of MR and also compositions of various species in permeate and retentate streams. The simulation results indicated that the Pd-based MR has better performance with respect to traditional reactor (TR) in terms of the ethanol conversion, especially, at lower reaction temperatures and higher reactions pressures. As a consequence, CFD model results illustrated that Pd-based MR performance was improved by increasing the reaction pressure, while this parameter had negative effect on the TR performance. This result related to enhancement of hydrogen permeance through the palladium membrane by increasing the pressure gradient. Indeed, this shift effect can provide a higher ethanol conversion in lower temperatures in the Pd-based MR. In particular, 98% ethanol conversion and 37% hydrogen recovery was achieved at 350°C and 2 atm.


Sign in / Sign up

Export Citation Format

Share Document