vitelline membrane
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 16)

H-INDEX

32
(FIVE YEARS 2)

Open Biology ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 210067
Author(s):  
Anna H. York-Andersen ◽  
Benjamin W. Wood ◽  
Elise L. Wilby ◽  
Alexander S. Berry ◽  
Timothy T. Weil

Egg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilization, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well-understood. For many insects, egg activation can be triggered independently of fertilization. In Drosophila melanogaster , egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte. Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in ex vivo mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins and DEGenerin/Epithelial Na + channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of transient receptor potential M channels to transport calcium, most probably from the perivitelline space, across the plasma membrane into the mature oocyte. Our data establish osmotic pressure as a mechanism that initiates egg activation in Drosophila and are consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and show remarkable similarities to the mechanism of egg activation in some plants.


2021 ◽  
Vol 22 (12) ◽  
pp. 6464
Author(s):  
Charlotta Ekblom ◽  
Kenneth Söderhäll ◽  
Irene Söderhäll

Early changes in hemocyte proteins in freshwater crayfish Pacifastacus leniusculus, in response to an injection with the fungal pattern recognition protein β-1,3-glucan (laminarin) were investigated, as well as changes after saline (vehicle) injection and in naïve animals. Injection of saline resulted in rapid recruitment of granular hemocytes from surrounding tissues, whereas laminarin injection on the other hand induced an initial dramatic drop of hemocytes. At six hours after injection, the hemocyte populations therefore were of different composition. The results show that mature granular hemocytes increase in number after saline injection as indicated by the high abundance of proteins present in granular cell vesicles, such as a vitelline membrane outer layer protein 1 homolog, mannose-binding lectin, masquerade, crustin 1 and serine protease homolog 1. After injection with the β-1,3-glucan, only three proteins were enhanced in expression, in comparison with saline-injected animals and uninjected controls. All of them may be associated with immune responses, such as a new and previously undescribed Kazal proteinase inhibitor. One interesting observation was that the clotting protein was increased dramatically in most of the animals injected with laminarin. The number of significantly affected proteins was very few after a laminarin injection when compared to uninjected and saline-injected crayfish. This finding may demonstrate some problematic issues with gene and protein expression studies from other crustaceans receiving injections with pathogens or pattern recognition proteins. If no uninjected controls are included and no information about hemocyte count (total or differential) is given, expressions data for proteins or mRNAs are very difficult to properly interpret.


2021 ◽  
Author(s):  
Daniele Kunz ◽  
Anfu Wang ◽  
Chon U Chan ◽  
Robyn H. Pritchard ◽  
Wenyu Wang ◽  
...  

AbstractEmbryonic tissues undergoing shape change draw mechanical input from extraembryonic substrates. In avian eggs, the early blastoderm disk is under the tension of the vitelline membrane (VM). Here we report that chicken VM characteristically downregulates tension and stiffness to facilitate stage-specific embryo morphogenesis. While early relaxation of the VM impairs blastoderm expansion, maintaining VM tension in later stages resists the convergence of the posterior body causing stalled elongation, open neural tube, and axis rupture. Biochemical and structural analysis shows that VM weakening follows the reduction of its outer-layer glycoprotein fibers, which is caused by an increasing albumen pH due to CO2 release from the egg. Our results identify a previously unrecognized mechanism of body axis defects through mis-regulation of extraembryonic tissue tension.


2021 ◽  
Author(s):  
Anna H. York-Andersen ◽  
Benjamin W. Wood ◽  
Elise L. Wilby ◽  
Alexander S. Berry ◽  
Timothy T. Weil

ABSTRACTEgg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilisation, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well understood. For many insects, egg activation can be triggered independently of fertilisation. In Drosophila melanogaster, egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte.Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins (AQPs) and DEGenerin/Epithelial Na+ (DEG/ENaC) channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of Trpm channels to transport calcium, most likely from the perivitelline space, across the plasma membrane into the mature oocyte.Our data establishes osmotic pressure as the mechanism that initiates egg activation in Drosophila and is consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and shows remarkable similarities to the mechanism of egg activation in some plants.


2021 ◽  
Vol 90 (4) ◽  
pp. 465-475
Author(s):  
Miroslava Fašiangová ◽  
Gabriela Bořilová ◽  
Danka Haruštiaková ◽  
Dana Kumprechtová ◽  
Miroslav Cigánek ◽  
...  

The aim of this study was to assess the effects of four types of selenium (Se) feed supplements on the indicators of the oxidative stability of egg yolk. A total of 1,740 Bovans Brown laying hens were divided into 4 experimental and 1 control group. The diets fed to the experimental groups were supplemented with 0.2 mg/kg of Se, provided as sodium selenite, Se-enriched yeast, synthetic L-selenomethionine and hydroxy-analogue of selenomethionine. The highest concentrations of MDA, an indicator of secondary lipid oxidation, were confirmed in the Control Group eggs (P < 0.001). Egg yolks from the Control Group were found to have the highest lightness (P = 0.032), the lowest colour chroma and the lowest proportions of the red and yellow colours (P < 0.001). The highest vitelline membrane strength was measured in eggs from groups fed diets supplemented with organic Se (P < 0.001). No significant differences were found between groups in the total fatty acid content, the content of saturated and unsaturated fatty acids or the n-6/n-3 fatty acid ratios. Our study confirmed the effect of Se feed supplements on the concentration of MDA and the colour indicators of egg yolk and on the vitelline membrane strength.


2020 ◽  
Vol 164 ◽  
pp. 3125-3132
Author(s):  
Jing Xiao ◽  
Jinqiu Wang ◽  
Lei Cheng ◽  
Sihai Gao ◽  
Shugang Li ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Krzysztof Damaziak ◽  
Marek Kieliszek ◽  
Dariusz Gozdowski

Abstract In this study, we aimed to perform structural and proteomic analysis of the vitelline membrane (VM) of two species birds belonging to the family Turdidae: blackbird (Turdus merula) and song thrush (Turdus philomelos). We performed structural analyses using scanning electron microscopy. The VM proteins were identified and compared to the best-known chicken VM proteins. According to our results, VM of both species has a typical three-layered structure: the outer layer, inner layer, and the continuous membrane between them. An unusual observation was the finding of “convexity” formed by the inner layer in blackbird. The role of these convex structures is not known, but they can be typical for the species and can be used in their identification. In addition, we identified two proteins in the VM of both species of birds, of which U3KEZ1 FICAL was not previously identified in any other bird species, and the U3JXV8 FICAL protein was confirmed only once in cockatiel parrot VM. The function of these proteins is not exactly known, but their structure shows similarities to the SERPIN proteins that are involved in microbiological defense, i.e., they are immune proteins. This study contributes to the current knowledge about the structure and composition of proteins of VM, especially because similar analyses have never been performed for Turdidae family. Knowledge of the structure and specific proteins of blackbird and song thrush VM can be beneficial in research on ecology and bird biology and also helpful in developing noninvasive and nongenetic identification methods.


2020 ◽  
Author(s):  
Dawei Chen ◽  
Yinyin Liu ◽  
Lina Ma ◽  
Junhua Pu ◽  
Junxian Lu ◽  
...  

Abstract BACKGROUND: Free gossypol (FG) and cyclopropenoid fatty acids (CPFAs) are two main natural toxins in cottonseed meal(CSM). The increased yolk elasticity under cold storage conditions is related to the excessive CSM in the feed. However, which toxin caused the increased yolk elasticity is still not clear. RESULTS: Our results show that the addition of FG or CPFA to the diet significantly reduced the egg production and feed conversion ratio. Besides, FG also resulted in a decrease in egg weight. The storage of eggs at 4 °C for four weeks resulted in a significant increase in elasticity and a decrease in the concentration of iron and calcium in the boiled yolks of CPFA and CSM groups when compared to the control. CPFA and CSM supplemented groups also showed an increase in pH and content of water in the yolk. Scanning electron microscopy (SEM) images from the CPFA and CSM groups revealed that the morphology of the vitelline membrane of eggs was characterized by different-sized holes. Furthermore, after four weeks of cold storage, the morphology of the vitelline granules in the CPFA and CSM supplemented groups were damaged; however, there were no significant alterations found in the FG group. CONCLUSION: The main cause of the “sponge-bob egg” effect was the presence of CPFA in cottonseed meal, which causes an increase in permeability of the vitelline membrane in eggs.


Sign in / Sign up

Export Citation Format

Share Document