increase signal intensity
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hila Barzilai-Tutsch ◽  
Valerie Morin ◽  
Gauthier Toulouse ◽  
Stephen Firth ◽  
Christophe Marcelle ◽  
...  

The Wnt/beta-catenin signaling pathway is highly conserved throughout evolution and it plays crucial roles in several developmental and pathological processes. Wnt ligands can act at a considerable distance from their sources and it is therefore necessary to examine not only the Wnt-producing but also the Wnt-receiving cells and tissues to fully appreciate the many functions of this pathway. To monitor Wnt activity, multiple tools have been designed which consist of multimerized Wnt signaling response elements (TCF/LEF binding sites) driving the expression of fluorescent reporter proteins (e.g. GFP, RFP) or of LacZ. The high stability of those reporters leads to a considerable accumulation in cells activating the pathway, thereby making them easily detectable. However, this makes them unsuitable to follow temporal changes of the pathway activity during dynamic biological events. Even though fluorescent transcriptional reporters can be destabilized to shorten their half-lives, this dramatically reduces signal intensities, particularly when applied in vivo. To alleviate these issues, we developed two transgenic quail lines in which high copy number (12x or 16x) of the TCF/LEF binding sites drive the expression of destabilized GFP variants. Translational enhancer sequences derived from viral mRNAs were used to increase signal intensity and specificity. This resulted in transgenic lines efficient for the characterisation of TCF/beta-catenin transcriptional dynamic activities during embryogenesis, including using in vivo imaging. Our analyses demonstrate the use of this transcriptional reporter to unveil novel aspects of Wnt signaling, thus opening new routes of investigation into the role of this pathway during amniote embryonic development.


Neurology ◽  
2019 ◽  
Vol 93 (6) ◽  
pp. e611-e623 ◽  
Author(s):  
Robert Zivadinov ◽  
Niels Bergsland ◽  
Jesper Hagemeier ◽  
Deepa P. Ramasamy ◽  
Michael G. Dwyer ◽  
...  

ObjectiveFrequent administration of gadolinium-based contrast agents in multiple sclerosis (MS) may increase signal intensity (SI) unenhanced T1-weighted imaging MRI throughout the brain. We evaluated the association between lifetime cumulative doses of gadodiamide administration and increased SI within the dentate nucleus (DN), globus pallidus (GP), and thalamus in patients with early MS.MethodsA total of 203 patients with MS (107 with baseline and follow-up MRI assessments) and 262 age- and sex-matched controls were included in this retrospective, longitudinal, 3T MRI-reader-blinded study. Patients with MS had disease duration <2 years at baseline and received exclusively gadodiamide at all MRI time points. SI ratio (SIR) to pons and CSF of lateral ventricle volume (CSF-LVV) were assessed. Analysis of covariance and correlation analyses, adjusted for age, sex, and region of interest volume, were used.ResultsThe mean follow-up time was 55.4 months, and the mean number of gadolinium-based contrast agents administrations was 9.2. At follow-up, 49.3% of patients with MS and no controls showed DN T1 hyperintensity (p < 0.001). The mean SIR of DN (p < 0.001) and of GP (p = 0.005) to pons and the mean SIR of DN, GP, and thalamus to CSF-LVV were higher in patients with MS compared to controls (p < 0.001). SIR of DN to pons was associated with number of gadodiamide doses (p < 0.001). No associations between SIR of DN, GP, and thalamus and clinical and MRI outcomes of disease severity were detected over the follow-up.ConclusionsDN, GP, and thalamus gadolinium deposition in early MS is associated with lifetime cumulative gadodiamide administration without clinical or radiologic correlates of more aggressive disease.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Magdalena Markowicz-Piasecka ◽  
Joanna Sikora ◽  
Paweł Szymański ◽  
Oliwia Kozak ◽  
Michał Studniarek ◽  
...  

This is the first study describing the utilization of PAMAM dendrimers as delivery vehicles of novel magnetic resonance imaging (MRI) contrast agents. The purpose of this paper was to establish the potential of G4 PAMAM dendrimers as carriers of gadolinium complexes of iminodiacetic acid derivatives and determine imaging properties of synthesized compounds inin vivostudies. Furthermore, we examined the influence of four synthesized complexes on the process of clot formation, stabilization, and lysis and on amidolytic activity of thrombin. Biodistribution studies have shown that the compounds composed of PAMAM G4 dendrimers and gadolinium complexes of iminodiacetic acid derivatives increase signal intensity preferably in liver in range of 59–116% in MRI studies which corresponds with the greatest accumulation of gadolinium after administration of the compounds. Synthesized compounds affect kinetic parameters of the proces of clot formation, its stabilization, and lysis. However, only one synthesized compound at concentration 10-fold higher than potential plasma concentrations contributed to the increase of general parameters such as the overall potential of clot formation and lysis (↑CLAUC) and total time of the process (↑T). Results of described studies provide additional insight into delivery properties of PAMAM dendrimers but simultaneously underscore the necessity for further research.


2003 ◽  
Vol 12 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Paula Henry ◽  
Todd Ricketts

Improving the signal-to-noise ratio (SNR) for individuals with hearing loss who are listening to speech in noise provides an obvious benefit. Although binaural hearing provides the greatest advantage over monaural hearing in noise, some individuals with symmetrical hearing loss choose to wear only one hearing aid. The present study tested the hypothesis that individuals with symmetrical hearing loss fit with one hearing aid would demonstrate improved speech recognition in background noise with increases in head turn. Fourteen individuals were fit monaurally with a Starkey Gemini in-the-ear (ITE) hearing aid with directional and omnidirectional microphone modes. Speech recognition performance in noise was tested using the audiovisual version of the Connected Speech Test (CST v.3). The test was administered in auditory-only conditions as well as with the addition of visual cues for each of three head angles: 0°, 20°, and 40°. Results indicated improvement in speech recognition performance with changes in head angle for the auditory-only presentation mode at the 20° and 40° head angles when compared to 0°. Improvement in speech recognition performance for the auditory + visual mode was noted for the 20° head angle when compared to 0°. Additionally, a decrement in speech recognition performance for the auditory + visual mode was noted for the 40° head angle when compared to 0°. These results support a speech recognition advantage for listeners fit with one ITE hearing aid listening in a close listener-to-speaker distance when they turn their head slightly in order to increase signal intensity.


Sign in / Sign up

Export Citation Format

Share Document