testicular development
Recently Published Documents


TOTAL DOCUMENTS

714
(FIVE YEARS 157)

H-INDEX

49
(FIVE YEARS 5)

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Faruk Hadziselimovic

AbstractSpermatogenesis in mammals is a heat-sensitive developmental pathway incompatible with the typical mammalian body temperature of 37 °C. It is thought that this is the reason why the testicles of most mammalian males are outside of the body cavity, in the scrotum, where they function at approximately 33 °C. It has been suggested that the abnormally high temperature environment of cryptorchid testes may lead to impaired testicular development and adult infertility. Here, I summarize the clinical, genetic, and histological evidence that argues against temperature stress and in favor of hypogonadotropic hypogonadism as the underlying cause of adult infertility in cryptorchidism.Patient summary: Infertility and an increased risk of testicular cancer in patients diagnosed with undescended testes are the consequence of a hormonal deficiency rather than temperature-induced cellular damage. Cryptorchidism therefore requires both surgical and hormonal treatment.


Endocrines ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 16-28
Author(s):  
Vanessa Moisan ◽  
Catherine Brousseau ◽  
Jacques J. Tremblay

Members of the pre-B-cell leukemia transcription factor (PBX) family of homeoproteins are mainly known for their involvement in hematopoietic cell differentiation and in the development of leukemia. The four PBX proteins, PBX1, PBX2, PBX3 and PBX4, belong to the three amino acid loop extension (TALE) superfamily of homeoproteins which are important transcriptional cofactors in several developmental processes involving homeobox (HOX) factors. Mutations in the human PBX1 gene are responsible for cases of gonadal dysgenesis with absence of male sex differentiation while Pbx1 inactivation in the mouse causes a failure in Leydig cell differentiation and function. However, no data is available regarding the expression profile of this transcription factor in the testis. To fill this knowledge gap, we have characterized PBX1 expression during mouse testicular development. Real time PCRs and Western blots confirmed the presence Pbx1 mRNA and PBX1 protein in different Leydig and Sertoli cell lines. The cellular localization of the PBX1 protein was determined by immunohistochemistry and immunofluorescence on mouse testis sections at different embryonic and postnatal developmental stages. PBX1 was detected in interstitial cells and in peritubular myoid cells from embryonic life until puberty. Most interstitial cells expressing PBX1 do not express the Leydig cell marker CYP17A1, indicating that they are not differentiated and steroidogenically active Leydig cells. In adults, PBX1 was mainly detected in Sertoli cells. The presence of PBX1 in different somatic cell populations during testicular development further supports a direct role for this transcription factor in testis cell differentiation and in male reproductive function.


Author(s):  
Shen-he Liu ◽  
Xiao-ya Ma ◽  
Ting-ting Yue ◽  
Zi-chen Wang ◽  
Kun-long Qi ◽  
...  

Testis is the primary organ of the male reproductive tract in mammals that plays a substantial role in spermatogenesis. Improvement of our knowledge regarding the molecular mechanisms in testicular development and spermatogenesis will be reflected in producing spermatozoa of superior fertility. Evidence showed that N6-Methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation and is strongly associated with production traits. However, the role of m6A in bovine testis has not been investigated yet. In this study, we conducted MeRIP-Seq analysis to explore the expression profiles of the m6A and its potential mechanism underlying spermatogenesis in nine bovine testes at three developmental stages (prepuberty, puberty and postpuberty). The experimental animals with triplicate in each stage were chosen based on their semen volume and sperm motility except for the prepuberty bulls and used for testes collection. By applying MeRIP-Seq analysis, a total of 8,774 m6A peaks and 6,206 m6A genes among the studied groups were identified. All the detected peaks were found to be mainly enriched in the coding region and 3′- untranslated regions. The cross-analysis of m6A and mRNA expression exhibited 502 genes with concomitant changes in the mRNA expression and m6A modification. Notably, 30 candidate genes were located in the largest network of protein-protein interactions. Interestingly, four key node genes (PLK4, PTEN, EGR1, and PSME4) were associated with the regulation of mammal testis development and spermatogenesis. This study is the first to present a map of RNA m6A modification in bovine testes at distinct ages, and provides new insights into m6A topology and related molecular mechanisms underlying bovine spermatogenesis, and establishes a basis for further studies on spermatogenesis in mammals.


Author(s):  
Veronica Bertini ◽  
Fulvia Baldinotti ◽  
Nina Tyutyusheva ◽  
Camillo Rosano ◽  
Cinzia Cosini ◽  
...  

Background. 46,XX disorders of sex development are rare. Approximately, 90% of XX males are SRY-positive, while testicular development in the absence of SRY takes place in a minority. Methods: A boy with 46,XX karyotype (SRY-negative; absence of SOX9 duplications) was investigated by targeted Next Generation Sequencing (NGS), Multiplex ligation-dependent probe amplification (MLPA), and Comparative Genomic Hybridization array (CGH-array). Results: The boy had normal male phenotype and normal prepubertal values of testicular hormones. He presented a heterozygous duplication of 49.626 bp, encompassing exons 2 and 3 of DMRT1. The result was arr[GRCh37] 9p24.3(845893_895518)x3. Since both breakpoints are harbored in the intronic regions, the duplication does not stop or shift the coding frame. Additional known pathogenic or uncertain variants in pro-testis gene cascade were not identified. Conclusions: This study report a boy with 46,XX testicular disorder of sex differentiation, showing a de novo partial intragenic duplication of DMRT1. This intragenic duplication may result in a gain of function, acting as primary pro-testis gene (or anti-ovary gene) in a 46,XX human foetus and permitting normal pre-pubertal endocrine testis function.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yu-Bo Ma ◽  
Ming Gao ◽  
Tong-Dian Zhang ◽  
Tie Chong ◽  
He-Cheng Li ◽  
...  

In the past two decades, testicular tissue grafting and xenografting have been well established, with the production of fertilization-competent sperm in some studies. However, few studies have been carried out to observe the development of grafted prepubertal testicular tissue of rats and compare the biological differences between in situ testis and grafted testis. In this study, we established the prepubertal testicular tissue xenografting model using a 22-day-old rat and evaluated certain parameters, including testicular histology, testosterone production, and ultrastructure of the grafted testes. We also assessed gene expression of cell proliferation markers, testicular cell markers, and antioxidative defense system. Our results showed that 47 days after transplantation, intratesticular testosterone concentration was not significantly altered; however, cell proliferation, spermatogenesis, and Sertoli cell markers in the transplanted testes were significantly disrupted compared with the control group, accompanied by aggravated apoptosis and oxidative damage. Moreover, the transplanted testes showed smaller tubular diameter and disrupted spermatogenic epithelium with apparent vacuoles, distorted and degenerated germ cells with obscure nuclear margin, and no spermatids in the center of the tubules. Although testis xenografting has been extensively tested and attained great achievement in other species, the prepubertal rat testicular tissue xenografting to immunodeficient mice exhibited obvious spermatogenesis arrest and oxidative damage. The protocol still needs further optimization, and there are still some unknown factors in prepubertal rat testes transplantation.


Author(s):  
Xingdong Wang ◽  
Jie Pei ◽  
Shaoke Guo ◽  
Mengli Cao ◽  
Pengjia Bao ◽  
...  

The potential regulatory role of N6-methyladenosine (m6A), the most prominent mRNA modification in eukaryotes, has recently been identified in mammals, plants, and yeast. However, whether and how m6A methylation is involved in sexual maturation in mammals remains largely unexplored. In this study, testicular tissue was obtained from yaks before and after sexual maturation, and m6A maps were generated via preliminary experiments and methylated RNA immunoprecipitation sequencing. Only spermatogonial cells and a few primary spermatocytes were observed in the testicular tissue of yaks before sexual maturation, while spermatogenic cells at different stages of maturity could observed after sexual maturation. Experiments examining the expression of methylation-related enzymes and overall methylation levels showed that the methylation levels in yak testes increased after sexual maturation. Overall, 1,438 methylation peaks were differentially expressed before and after sexual maturation; 1,226 showed significant up-regulation and 212 showed significant down-regulation after sexual maturation. Annotation analysis showed that the differential methylation peaks were most commonly concentrated in the exon region, followed by the 3′UTR and finally the 5′UTR region. KEGG pathway analysis demonstrated that homologous recombination, the Notch signaling pathway, growth hormone synthesis, and other signaling pathways may be involved in testicular development and maturation in yaks. Levels of most m6A modifications were positively correlated with mRNA abundance, suggesting that m6A plays a regulatory role in mammalian sexual maturation. To our knowledge, this is the first report of an m6A transcriptional map of the yak testes, and our study lays the foundation for elucidating the function of m6A in the development of yak testes.


Author(s):  
Yongfu La ◽  
Fulong Ma ◽  
Xiaoming Ma ◽  
Pengjia Bao ◽  
Min Chu ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11908
Author(s):  
Davide Francomano ◽  
Valerio Sanguigni ◽  
Paolo Capogrosso ◽  
Federico Deho ◽  
Gabriele Antonini

Hormones and cytokines are known to regulate cellular functions in the testes. These biomolecules induce a broad spectrum of effects on various level of spermatogenesis, and among them is the modulation of cell junction restructuring between Sertoli cells and germ cells in the seminiferous epithelium. Cytokines and androgens are closely related, and both correct testicular development and the maintenance of spermatogenesis depend on their function. Cytokines also play a crucial role in the immune testicular system, activating and directing leucocytes across the endothelial barrier to the inflammatory site, as well as in increasing their adhesion to the vascular wall. The purpose of this review is to revise the most recent findings on molecular mechanisms that play a key role in male sexual function, focusing on three specific molecular patterns, namely, cytokines, miRNAs, and endothelial progenitor cells. Numerous reports on the interactions between the immune and endocrine systems can be found in the literature. However, there is not yet a multi-approach review of the literature underlying the role between molecular patterns and testicular and sexual function.


Sign in / Sign up

Export Citation Format

Share Document