holomorphic sectional curvature
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 28)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 45 (03) ◽  
pp. 449-463
Author(s):  
ALIYA NAAZ SIDDIQUI ◽  
MOHAMMAD HASAN SHAHID

In the present paper, we study Casorati curvatures for statistical hypersurfaces. We show that the normalized scalar curvature for any real hypersurface (i.e., statistical hypersurface) of a holomorphic statistical manifold of constant holomorphic sectional curvature k is bounded above by the generalized normalized δ−Casorati curvatures and also consider the equality case of the inequality. Some immediate applications are discussed.


2021 ◽  
Vol 244 ◽  
pp. 09005
Author(s):  
Abu-Saleem Ahmad ◽  
Ivan Kochetkov ◽  
Aligadzhi Rustanov

In the present paper we obtained 2 identities, which are satisfied by Riemann curvature tensor of generalized Kenmotsu manifolds. There was obtained an analytic expression for third structure tensor or tensor of f-holomorphic sectional curvature of GK-manifold. We separated 2 classes of generalized Kenmotsu manifolds and collected their local characterization.


Author(s):  
A.R. Rustanov ◽  
E.A. Polkina ◽  
S.V. Kharitonova

In this paper almost C(λ)-manifolds are considered. The local structure of Ricci-flat almost C(λ)-manifolds is obtained. On the space of the adjoint G-structure, necessary and sufficient conditions are obtained under which the al-most C(λ)-manifolds are manifolds of constant curvature and the structure of the Riemannian curvature tensor of an almost C(λ)-manifold of constant curvature is obtained. Relations are obtained that characterize the Einstein almost C(λ)-manifolds. It is proved that a complete almost C(λ)-Einstein manifold is either holomorphically isometrically covered by the product of a real line by a Ricciflat Kähler manifold, or is compact and has a finite fundamental group. For almost C(λ)-manifolds that are -Einstein, analytic expressions for the functions  and  characterizing these manifolds are obtained. It is shown that an almost C(λ)-manifold has an Ф-invariant Ricci tensor. We study also almost C(λ)-manifolds of pointwise constant Ф-holomorphic sectional curvature.


Sign in / Sign up

Export Citation Format

Share Document