dense subspace
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 22 (2) ◽  
pp. 295
Author(s):  
Sudip Kumar Acharyya ◽  
Rakesh Bharati ◽  
Atasi Deb Ray

<pre>c-realcompact spaces are introduced by Karamzadeh and Keshtkar in Quaest. Math. 41, no. 8 (2018), 1135-1167. We offer a characterization of these spaces X via c-stable family of closed sets in X by showing that  X is c-realcompact if and only if each c-stable family of closed sets in X with finite intersection property has nonempty intersection. This last condition which makes sense for an arbitrary topological space can be taken as an alternative definition of a c-realcompact space. We show that each topological space can be extended as a dense subspace to a c-realcompact space with some desired extension properties. An allied class of spaces viz CP-compact spaces akin to that of c-realcompact spaces are introduced. The paper ends after examining how far a known class of c-realcompact spaces could be realized as CP-compact for appropriately chosen ideal P of closed sets in X.</pre>


2021 ◽  
Vol 13 (1) ◽  
pp. 81-88
Author(s):  
I. Krasikova ◽  
M. Pliev ◽  
M. Popov

We study measurable elements of a Riesz space $E$, i.e. elements $e \in E \setminus \{0\}$ for which the Boolean algebra $\mathfrak{F}_e$ of fragments of $e$ is measurable. In particular, we prove that the set $E_{\rm meas}$ of all measurable elements of a Riesz space $E$ with the principal projection property together with zero is a $\sigma$-ideal of $E$. Another result asserts that, for a Riesz space $E$ with the principal projection property the following assertions are equivalent. (1) The Boolean algebra $\mathcal{U}$ of bands of $E$ is measurable. (2) $E_{\rm meas} = E$ and $E$ satisfies the countable chain condition. (3) $E$ can be embedded as an order dense subspace of $L_0(\mu)$ for some probability measure $\mu$.


Author(s):  
Sascha Lill ◽  
Lukas Nickel ◽  
Roderich Tumulka

AbstractFor multi-time wave functions, which naturally arise as the relativistic particle-position representation of the quantum state vector, the analog of the Schrödinger equation consists of several equations, one for each time variable. This leads to the question of how to prove the consistency of such a system of PDEs. The question becomes more difficult for theories with particle creation, as then different sectors of the wave function have different numbers of time variables. Petrat and Tumulka (2014) gave an example of such a model and a non-rigorous argument for its consistency. We give here a rigorous version of the argument after introducing an ultraviolet cut-off into the creation and annihilation terms of the multi-time evolution equations. These equations form an infinite system of coupled PDEs; they are based on the Dirac equation but are not fully relativistic (in part because of the cut-off). We prove the existence and uniqueness of a smooth solution to this system for every initial wave function from a certain class that corresponds to a dense subspace in the appropriate Hilbert space.


Author(s):  
Alexandru Aleman ◽  
Anton Baranov ◽  
Yurii Belov ◽  
Haakan Hedenmalm

Abstract We study the structure of the backward shift invariant and nearly invariant subspaces in weighted Fock-type spaces ${\mathcal{F}}_W^p$, whose weight is not necessarily radial. We show that in the spaces ${\mathcal{F}}_W^p$, which contain the polynomials as a dense subspace (in particular, in the radial case), all nontrivial backward shift invariant subspaces are of the form $\mathcal{P}_n$, that is, finite-dimensional subspaces consisting of polynomials of degree at most $n$. In general, the structure of the nearly invariant subspaces is more complicated. In the case of spaces of slow growth (up to zero exponential type), we establish an analogue of de Branges’ ordering theorem. We then construct examples that show that the result fails for general Fock-type spaces of larger growth.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1199
Author(s):  
Juan H. Arredondo ◽  
Manuel Bernal ◽  
María Guadalupe Morales

We generalize the classic Fourier transform operator F p by using the Henstock–Kurzweil integral theory. It is shown that the operator equals the H K -Fourier transform on a dense subspace of L p , 1 < p ≤ 2 . In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function F p ( f ) under more general conditions than in Lebesgue’s theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue’s theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.


2020 ◽  
pp. 1-5
Author(s):  
José Bonet

Abstract Extending a result of Mashreghi and Ransford, we prove that every complex separable infinite-dimensional Fréchet space with a continuous norm is isomorphic to a space continuously included in a space of holomorphic functions on the unit disc or the complex plane, which contains the polynomials as a dense subspace. As a consequence, we deduce the existence of nuclear Fréchet spaces of holomorphic functions without the bounded approximation.


Axioms ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 7 ◽  
Author(s):  
Sidney A. Morris ◽  
David T. Yost

The longstanding Banach–Mazur separable quotient problem asks whether every infinite-dimensional Banach space has a quotient (Banach) space that is both infinite-dimensional and separable. Although it remains open in general, an affirmative answer is known in many special cases, including (1) reflexive Banach spaces, (2) weakly compactly generated (WCG) spaces, and (3) Banach spaces which are dual spaces. Obviously (1) is a special case of both (2) and (3), but neither (2) nor (3) is a special case of the other. A more general result proved here includes all three of these cases. More precisely, we call an infinite-dimensional Banach space X dual-like, if there is another Banach space E, a continuous linear operator T from the dual space E * onto a dense subspace of X, such that the closure of the kernel of T (in the relative weak* topology) has infinite codimension in E * . It is shown that every dual-like Banach space has an infinite-dimensional separable quotient.


2018 ◽  
Vol 39 (12) ◽  
pp. 3407-3436 ◽  
Author(s):  
DAVIDE RAVOTTI

We consider suspension flows over uniquely ergodic skew-translations on a $d$-dimensional torus $\mathbb{T}^{d}$ for $d\geq 2$. We prove that there exists a set $\mathscr{R}$ of smooth functions, which is dense in the space $\mathscr{C}(\mathbb{T}^{d})$ of continuous functions, such that every roof function in $\mathscr{R}$ which is not cohomologous to a constant induces a mixing suspension flow. We also construct a dense set of mixing examples which is explicitly described in terms of their Fourier coefficients. In the language of nilflows on nilmanifolds, our result implies that, for every uniquely ergodic nilflow on a quasi-abelian filiform nilmanifold, there exists a dense subspace of smooth time-changes in which mixing occurs if and only if the time-change is not cohomologous to a constant. This generalizes a theorem by Avila, Forni and Ulcigrai [Mixing for time-changes of Heisenberg nilflows. J. Differential Geom.89(3) (2011), 369–410] for the classical Heisenberg group.


Sign in / Sign up

Export Citation Format

Share Document