moment closure
Recently Published Documents


TOTAL DOCUMENTS

522
(FIVE YEARS 59)

H-INDEX

47
(FIVE YEARS 3)

Author(s):  
Naman Jain ◽  
Hieu Pham ◽  
Xinyi Huang ◽  
Sutanu Sarkar ◽  
Xiang Yang ◽  
...  

Abstract Buoyant shear layers encountered in many engineering and environmental applications have been studied by researchers for decades. Often, these flows have high Reynolds and Richardson numbers, which leads to significant/intractable space-time resolution requirements for DNS or LES. On the other hand, many of the important physical mechanisms, such as stress anisotropy, wake stabilization, and regime transition, inherently render eddy viscosity-based RANS modeling inappropriate. Accordingly, we pursue second-moment closure (SMC), i.e., full Reynolds stress/flux/variance modeling, for moderate Reynolds number non-stratified, and stratified shear layers for which DNS is possible. A range of sub-model complexity is pursued for the diffusion of stresses, density fluxes and variance, pressure strain and scrambling, and dissipation. These sub-models are evaluated in terms of how well they are represented by DNS in comparison to the exact Reynolds averaged terms, and how well they impact the accuracy of full RANS closure. For the non-stratified case, SMC model predicts the shear layer growth rate and Reynolds shear stress profiles accurately. Stress anisotropy and budgets are captured only qualitatively. Comparing DNS of exact and modeled terms, inconsistencies in model performance and assumptions are observed, including inaccurate prediction of individual statistics, non-negligible pressure diffusion, and dissipation anisotropy. For the stratified case, shear layer and gradient Richardson number growth rates, and stress, flux and variance decay rates, are captured with less accuracy than corresponding flow parameters in the non-stratified case. These studies lead to several recommendations for model improvement.


2021 ◽  
Author(s):  
Vincent Wagner ◽  
Benjamin Castellaz ◽  
Marco Oesting ◽  
Nicole Radde

MotivationThe Chemical Master Equation is the most comprehensive stochastic approach to describe the evolution of a (bio-)chemical reaction system. Its solution is a time-dependent probability distribution on all possible configurations of the system. As the number of possible configurations is typically very large, the Master Equation is often practically unsolvable. The Method of Moments reduces the system to the evolution of a few moments of this distribution, which are described by a system of ordinary differential equations. Those equations are not closed, since lower order moments generally depend on higher order moments. Various closure schemes have been suggested to solve this problem, with different advantages and limitations. Two major problems with these approaches are first that they are open loop systems, which can diverge from the true solution, and second, some of them are computationally expensive.ResultsHere we introduce Quasi-Entropy Closure, a moment closure scheme for the Method of Moments which estimates higher order moments by reconstructing the distribution that minimizes the distance to a uniform distribution subject to lower order moment constraints. Quasi-Entropy closure is similar to Zero-Information closure, which maximizes the information entropy. Results show that both approaches outperform truncation schemes. Moreover, Quasi-Entropy Closure is computationally much faster than Zero-Information Closure. Finally, our scheme includes a plausibility check for the existence of a distribution satisfying a given set of moments on the feasible set of configurations. Results are evaluated on different benchmark problems.Abstract Figure


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Hildeberto Jardón-Kojakhmetov ◽  
Christian Kuehn ◽  
Andrea Pugliese ◽  
Mattia Sensi

AbstractWe study a fast–slow version of an SIRS epidemiological model on homogeneous graphs, obtained through the application of the moment closure method. We use GSPT to study the model, taking into account that the infection period is much shorter than the average duration of immunity. We show that the dynamics occurs through a sequence of fast and slow flows, that can be described through 2-dimensional maps that, under some assumptions, can be approximated as 1-dimensional maps. Using this method, together with numerical bifurcation tools, we show that the model can give rise to periodic solutions, differently from the corresponding model based on homogeneous mixing.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1710
Author(s):  
Wen-An Yong ◽  
Yizhou Zhou

This paper is concerned with modeling nonequilibrium phenomena in spatial domains with boundaries. The resultant models consist of hyperbolic systems of first-order partial differential equations with boundary conditions (BCs). Taking a linearized moment closure system as an example, we show that the structural stability condition and the uniform Kreiss condition do not automatically guarantee the compatibility of the models with the corresponding classical models. This motivated the generalized Kreiss condition (GKC)—a strengthened version of the uniform Kreiss condition. Under the GKC and the structural stability condition, we show how to derive the reduced BCs for the equilibrium systems as the classical models. For linearized problems, the validity of the reduced BCs can be rigorously verified. Furthermore, we use a simple example to show how thus far developed theory can be used to construct proper BCs for equations modeling nonequilibrium phenomena in spatial domains with boundaries.


2021 ◽  
Author(s):  
Shrey Trivedi ◽  
Savvas Gkantonas ◽  
Yuri M. Wright ◽  
Matteo Parravicini ◽  
Christophe Barro ◽  
...  

2021 ◽  
Author(s):  
Naman Jain ◽  
Xinyi Huang ◽  
Xiang Yang ◽  
Robert Kunz ◽  
Hieu T. Pham ◽  
...  

Abstract Buoyant shear layers are encountered in many engineering and environmental applications, and have been studied by researchers in the context of experiments and modeling for decades. Often, these flows have high Reynolds and Richardson numbers, and this leads to significant/intractable space-time resolution requirements for DNS or LES modeling. On the other hand, many of the important physical mechanisms in these systems, such as stress anisotropy, wake stabilization, and regime transition, inherently render eddy viscosity-based RANS modeling inappropriate. Accordingly, we pursue second-moment closure (SMC), i.e., full Reynolds stress/flux/variance modeling, for moderate Reynolds number non-stratified, and stratified shear layers for which DNS is possible. A range of sub-model complexity is pursued for the diffusion of stresses, density fluxes and variance, pressure strain and scrambling, and dissipation. These sub-models are evaluated in terms of how well they are represented by DNS in comparison to the exact Reynolds averaged terms, and how well they impact the accuracy of the full RANS closure. For the non-stratified case, the SMC model predicts the shear layer growth rate and Reynolds shear stress profiles accurately. Stress anisotropy and budgets are captured only qualitatively. Comparing DNS of exact and modeled terms, inconsistencies in model performance and assumptions are observed, including inaccurate prediction of individual statistics, non-negligible pressure diffusion, and dissipation anisotropy. For the stratified case, shear layer and gradient Richardson number growth rates, and stress, flux and variance decay rates, are captured with less accuracy than corresponding flow parameters in the non-stratified case. These studies lead to several recommendations for model improvement.


Sign in / Sign up

Export Citation Format

Share Document