earth’s rotation
Recently Published Documents


TOTAL DOCUMENTS

716
(FIVE YEARS 73)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Jérémy Rekier ◽  
Benjamin F. Chao ◽  
Jianli Chen ◽  
Véronique Dehant ◽  
Séverine Rosat ◽  
...  

Author(s):  
Santiago A. Triana ◽  
Mathieu Dumberry ◽  
David Cébron ◽  
Jérémie Vidal ◽  
Antony Trinh ◽  
...  

Abstract Changes in the Earth’s rotation are deeply connected to fluid dynamical processes in the outer core. This connection can be explored by studying the associated Earth eigenmodes with periods ranging from nearly diurnal to multi-decadal. It is essential to understand how the rotational and fluid core eigenmodes mutually interact, as well as their dependence on a host of diverse factors, such as magnetic effects, density stratification, fluid instabilities or turbulence. It is feasible to build detailed models including many of these features, and doing so will in turn allow us to extract more (indirect) information about the Earth’s interior. In this article, we present a review of some of the current models, the numerical techniques, their advantages and limitations and the challenges on the road ahead.


2021 ◽  
Vol 925 ◽  
Author(s):  
Matthew N. Crowe

The meridional component of the earth's rotation is often neglected in geophysical contexts. This is referred to as the ‘traditional approximation’ and is justified by the typically small vertical velocity and aspect ratio of such problems. Ocean fronts are regions of strong horizontal buoyancy gradient and are associated with strong vertical transport of tracers and nutrients. Given these comparatively large vertical velocities, non-traditional rotation may play a role in governing frontal dynamics. Here the effects of non-traditional rotation on a front in turbulent thermal wind balance are considered using an asymptotic approach. Solutions are presented for a general horizontal buoyancy profile and examined in the simple case of a straight front. Non-traditional effects are found to depend strongly on the direction of the front and may lead to the generation of jets and the modification of the frontal circulation and vertical transport.


2021 ◽  
Vol 56 (2) ◽  
pp. 10-17
Author(s):  
Lihua MA

Abstract Length-of-day (LOD) change, i.e., variations in Earth’s rotation rate, includes the long-term slowdown trend, as well as periodic and irregular fluctuations. The current continuous sequence of the LOD change covers a time span of <400 years. Using astronomical records in ancient historical documents, combined with a modern astronomical ephemeris, it is possible to obtain ancient LOD change. Some scholars have given a discontinuous LOD data series for the past 4000 years. In this paper, the author uses the Lomb–Scargle periodogram to study the LOD series and finds a significant quasi-1500-year-cycle signal. Furthermore, with weighted wavelet Z-transform, time-varying characteristics of the cycle in the LOD change are obtained.


2021 ◽  
Author(s):  
Radosław Zajdel ◽  
Krzysztof Sośnica ◽  
Grzegorz Bury ◽  
Kamil Kazmierski

&lt;p&gt;Variations in the Earth's rotation can be examined in the low-frequency and high-frequency temporal scales. The low-frequency variations are dominated by the annual and Chandler wobbles, while the high-frequency variations are primarily caused by tidal effects and mass redistributions within the system Earth. Depending on the purpose, the Earth Rotation Parameters (ERPs) can be estimated in different time resolutions using space-geodetic techniques, especially using GNSS. However, the residual signals between different space geodetic techniques or satellite constellations indicate system-specific differences, which have to be correctly identified.&lt;/p&gt;&lt;p&gt;This research provides the daily, and sub-daily series of Earth Rotation Parameters (ERPs) estimated using GPS, GLONASS, and Galileo observations. We test different sampling intervals of estimated ERPs from 1h to 24h. The GNSS-based sub-daily estimates have been compared with the external models of variations in ERPs induced by the ocean tides from the IERS 2010 Conventions, a new model by Desai-Sibois, and the VLBI-based model by Gipson.&lt;/p&gt;&lt;p&gt;Any system-specific ERPs are affected by the orbital and draconitic signals. The orbital signals are visible in all system-specific ERPs at the periods that arise from the resonance between the Earth's rotation and the satellite revolution period, e.g., 8.87h, 34.22h, 3.4 days, 10 days for Galileo; 7.66h, 21.29h, 3.9 days, 7.9 days for GLONASS; 7.98h (S3 tidal term), 11.97h (S2 tidal term), 23.93h (S1 tidal term) for GPS. In the Galileo and GLONASS solutions, the artificial non-tidal signals' amplitudes can reach up to 30 &amp;#181;as. The GPS-derived sub-daily ERPs suffer from the overlapping periods of the diurnal and semidiurnal tidal terms and the harmonics of the GPS revolution period. After recovery of 38 sub-daily tidal terms, the Galileo-based model is more consistent with the external models than the GPS-based model, especially in the prograde diurnal band. The results confirmed that the Desai&amp;#8211;Sibois model is more consistent with GNSS observations than the currently recommended model by the IERS 2010 Conventions. Moreover, GPS-based length-of-day (LoD) is systematically biased with respect to the IERS-C04-14 values with a mean offset of &amp;#8722;22.4 &amp;#181;s/day, because of the deep resonance 2:1 between the satellite revolution period and the Earth rotation. The Galileo-based and GLONASS-based solutions are almost entirely free of this issue. Against the individual system-specific solutions, the multi-GNSS solution is not affected by most of the system-specific artifacts. Thus, multi-GNSS solutions are clearly beneficial for the estimation of both daily and sub-daily ERPs.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document