nuclear hormone receptor
Recently Published Documents


TOTAL DOCUMENTS

553
(FIVE YEARS 108)

H-INDEX

80
(FIVE YEARS 5)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Chan-Ping You ◽  
Man-Hong Leung ◽  
Wai-Chung Tsang ◽  
Ui-Soon Khoo ◽  
Ho Tsoi

Biomarkers can be used for diagnosis, prognosis, and prediction in targeted therapy. The estrogen receptor α (ERα) and human epidermal growth factor receptor 2 (HER2) are standard biomarkers used in breast cancer for guiding disease treatment. The androgen receptor (AR), a nuclear hormone receptor, contributes to the development and progression of prostate tumors and other cancers. With increasing evidence to support that AR plays an essential role in breast cancer, AR has been considered a useful biomarker in breast cancer, depending on the context of breast cancer sub-types. The existing survival analyses suggest that AR acts as a tumor suppressor in ER + ve breast cancers, serving as a favorable prognostic marker. However, AR functions as a tumor promoter in ER-ve breast cancers, including HER2 + ve and triple-negative (TNBC) breast cancers, serving as a poor prognostic factor. AR has also been shown to be predictive of the potential of response to adjuvant hormonal therapy in ER + ve breast cancers and to neoadjuvant chemotherapy in TNBC. However, conflicting results do exist due to intrinsic molecular differences between tumors and the scoring method for AR positivity. Applying AR expression status to guide treatment in different breast cancer sub-types has been suggested. In the future, AR will be a feasible biomarker for breast cancer. Clinical trials using AR antagonists in breast cancer are active. Targeting AR alone or other therapeutic agents provides alternatives to existing therapy for breast cancer. Therefore, AR expression will be necessary if AR-targeted treatment is to be used.


2021 ◽  
Author(s):  
Aikaterini Mechtidou ◽  
Franziska Greulich ◽  
Benjamin A Strickland ◽  
Celine Jouffe ◽  
Filippo M. Cernilogar ◽  
...  

Glucocorticoids (such as Dexamethasone) are commonly used immunomodulatory drugs with potent anti-inflammatory effects, whose mechanisms of action remain incompletely understood. They bind to the Glucocorticoid Receptor (GR), a nuclear hormone receptor that acts as a transcription factor to directly control the expression of inflammatory genes. To elucidate the complex molecular mechanisms employed by GR during the suppression of innate immune responses, we have performed proteomics, ChIP-seq, ATAC-seq, RNA-seq and bioinformatics together with genetic and pharmacological loss of function studies in primary mouse macrophages. We found that GR interacts with the ATP-dependent SWI/SNF chromatin remodeling complex to regulate a specific subset of target genes. Here we show that the central catalytic subunit BRG1 is required not only for the transcriptional activation of classical GR target genes such as Fkbp5 or Klf9, but also for the transcriptional repression of cytokines and chemokines such as Ccl2, Cxcl10 or Il1a. We demonstrate that loss of BRG1 activity leads to reduced histone deacetylase (HDAC) function, and consequently increased histone acetylation, at these repressive GR binding sites. Altogether, our findings suggest that GR interacts with BRG1 to assemble a functional co-repressor complex at a defined fraction of macrophage cis-regulatory elements. These results may indicate additional non-classical, remodeling-independent functions of the SWI/SNF complex and may have implications for the development of future immunomodulatory therapies.


2021 ◽  
Vol 22 (23) ◽  
pp. 13167
Author(s):  
Sebastian Kwiatkowski ◽  
Anna Kajdy ◽  
Katarzyna Stefańska ◽  
Magdalena Bednarek-Jędrzejek ◽  
Sylwia Dzidek ◽  
...  

Obesity is a known factor in the development of preeclampsia. This paper links adipose tissue pathologies with aberrant placental development and the resulting preeclampsia. PPARγ, a transcription factor from the ligand-activated nuclear hormone receptor family, appears to be one common aspect of both pathologies. It is the master regulator of adipogenesis in humans. At the same time, its aberrantly low activity has been observed in placental pathologies. Overweight and obesity are very serious health problems worldwide. They have negative effects on the overall mortality rate. Very importantly, they are also conducive to diseases linked to impaired placental development, including preeclampsia. More and more people in Europe are suffering from overweight (35.2%) and obesity (16%) (EUROSTAT 2021 data), some of them young women planning pregnancy. As a result, we will be increasingly encountering obese pregnant women with a considerable risk of placental development disorders, including preeclampsia. An appreciation of the mechanisms shared by these two conditions may assist in their prevention and treatment. Clearly, it should not be forgotten that health education concerning the need for a proper diet and physical activity is of utmost importance here.


2021 ◽  
Vol 118 (48) ◽  
pp. e2105927118
Author(s):  
Tomas Raul Wiche Salinas ◽  
Yuwei Zhang ◽  
Daniele Sarnello ◽  
Alexander Zhyvoloup ◽  
Laurence Raymond Marchand ◽  
...  

Among CD4+ T cells, T helper 17 (Th17) cells are particularly susceptible to HIV-1 infection and are depleted from mucosal sites, which causes damage to the gut barrier, resulting in a microbial translocation-induced systemic inflammation, a hallmark of disease progression. Furthermore, a proportion of latently infected Th17 cells persist long term in the gastrointestinal lymphatic tract where a low-level HIV-1 transcription is observed. This residual viremia contributes to chronic immune activation. Thus, Th17 cells are key players in HIV pathogenesis and viral persistence. It is, however, unclear why these cells are highly susceptible to HIV-1 infection. Th17 cell differentiation depends on the expression of the master transcriptional regulator RORC2, a retinoic acid-related nuclear hormone receptor that regulates specific transcriptional programs by binding to promoter/enhancer DNA. Here, we report that RORC2 is a key host cofactor for HIV replication in Th17 cells. We found that specific inhibitors that bind to the RORC2 ligand-binding domain reduced HIV replication in CD4+ T cells. The depletion of RORC2 inhibited HIV-1 infection, whereas its overexpression enhanced it. RORC2 was also found to promote HIV-1 gene expression by binding to the nuclear receptor responsive element in the HIV-1 long terminal repeats (LTR). In treated HIV-1 patients, RORC2+ CD4 T cells contained more proviral DNA than RORC2− cells. Pharmacological inhibition of RORC2 potently reduced HIV-1 outgrowth in CD4+ T cells from antiretroviral-treated patients. Altogether, these results provide an explanation as to why Th17 cells are highly susceptible to HIV-1 infection and suggest that RORC2 may be a cell-specific target for HIV-1 therapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0248034
Author(s):  
Steven A. Saenz ◽  
Andrea Local ◽  
Tiffany Carr ◽  
Arvind Shakya ◽  
Shivsmriti Koul ◽  
...  

Retinoic acid receptor-related orphan nuclear receptor (ROR) γt is a member of the RORC nuclear hormone receptor family of transcription factors. RORγt functions as a critical regulator of thymopoiesis and immune responses. RORγt is expressed in multiple immune cell populations including Th17 cells, where its primary function is regulation of immune responses to bacteria and fungi through IL-17A production. However, excessive IL-17A production has been linked to numerous autoimmune diseases. Moreover, Th17 cells have been shown to elicit both pro- and anti-tumor effects. Thus, modulation of the RORγt/IL-17A axis may represent an attractive therapeutic target for the treatment of autoimmune disorders and some cancers. Herein we report the design, synthesis and characterization of three selective allosteric RORγt inhibitors in preclinical models of inflammation and tumor growth. We demonstrate that these compounds can inhibit Th17 differentiation and maintenance in vitro and Th17-dependent inflammation and associated gene expression in vivo, in a dose-dependent manner. Finally, RORγt inhibitors were assessed for efficacy against tumor formation. While, RORγt inhibitors were shown to inhibit tumor formation in pancreatic ductal adenocarcinoma (PDAC) organoids in vitro and modulate RORγt target genes in vivo, this activity was not sufficient to delay tumor volume in a KP/C human tumor mouse model of pancreatic cancer.


iScience ◽  
2021 ◽  
Vol 24 (11) ◽  
pp. 103361
Author(s):  
Benson Otarigho ◽  
Alejandro Aballay

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1734
Author(s):  
Giuliana Muzio ◽  
Giuseppina Barrera ◽  
Stefania Pizzimenti

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily. Originally described as “orphan nuclear receptors”, they can bind both natural and synthetic ligands acting as agonists or antagonists. In humans three subtypes, PPARα, β/δ, γ, are encoded by different genes, show tissue-specific expression patterns, and contribute to the regulation of lipid and carbohydrate metabolisms, of different cell functions, including proliferation, death, differentiation, and of processes, as inflammation, angiogenesis, immune response. The PPAR ability in increasing the expression of various antioxidant genes and decreasing the synthesis of pro-inflammatory mediators, makes them be considered among the most important regulators of the cellular response to oxidative stress conditions. Based on the multiplicity of physiological effects, PPAR involvement in cancer development and progression has attracted great scientific interest with the aim to describe changes occurring in their expression in cancer cells, and to investigate the correlation with some characteristics of cancer phenotype, including increased proliferation, decreased susceptibility to apoptosis, malignancy degree and onset of resistance to anticancer drugs. This review focuses on mechanisms underlying the antioxidant and anti-inflammatory properties of PPARs in physiological conditions, and on the reported beneficial effects of PPAR activation in cancer.


2021 ◽  
Author(s):  
Londen C Johnson ◽  
Joseph D Aguilera ◽  
Max T Levenson ◽  
Andreas D Rechtsteiner ◽  
An A Vo ◽  
...  

Nematode molting is a remarkable process where the animals must essentially build a new epidermis underneath the old skin and then rapidly shed the old skin. The study of molting provides a gateway into the developmental program of many core cellular and physiological processes, such as oscillatory gene expression, coordinated intracellular trafficking, steroid hormone signaling, developmental timing, and extracellular remodeling. The nuclear hormone receptor NHR-23/NR1F1 is an important regulator of molting. Imaging and western blot time-courses revealed oscillatory NHR-23::GFP expression in the epithelium that closely followed the reported mRNA expression. Timed depletion experiments using the auxin-inducible degron system revealed that NHR-23/NR1F1 depletion early in a given larval stage caused animals to arrest with only weak molting defects, whereas later depletion resulted in highly penetrant severe molting and morphological defects. This larval arrest was independent of insulin signaling. Despite the weakly penetrant molting defects following early NHR-23/NR1F1 depletion, the epidermal barrier was defective suggesting that NHR-23/NR1F1 is necessary for establishing or maintaining this barrier. NHR-23/NR1F1 coordinates the expression of factors involved in molting, lipid transport/metabolism, and remodeling of the apical extracellular matrix. We propose that NHR-23/NR1F1 is a regulator in a recently discovered large-scale gene oscillatory network coordinating rhythmic skin regeneration.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xantha Karp

Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.


2021 ◽  
Vol 8 ◽  
Author(s):  
Huan Wang ◽  
Wenqin Luo ◽  
Xuliang Wang ◽  
Dingwei Xue ◽  
Liangliang Ren ◽  
...  

Testicular nuclear receptor 4 (TR4) is a member of the nuclear hormone receptor family and acts as a ligand-activated transcription factor and functions in many biological processes, such as development, cellular differentiation, and homeostasis. Recent studies have shown that TR4 plays an important role in prostate cancer, renal cell carcinoma, and hepatocellular carcinoma; however, its potential link to bladder cancer (BC) remains unknown. This study found that bladder cancer exhibited a higher expression of TR4 compared to normal tissues. Overexpressed TR4 promoted the bladder cancer cell proliferation, and knocked down TR4 with TR4-siRNA suppressed the bladder cancer cell proliferation. Mechanistic studies reveal that TR4 functions by altering the expression of Bcl-2 to regulate apoptosis in bladder cancer cells. Furthermore, knocking down Bcl-2 reversed the BC proliferation induced by TR4. In vivo, we also confirmed that TR4 knockdown mice (TR4+/−) showed slower bladder cancer growth than wild-type mice (TR4+/+) induced by the carcinogenic chemicals. Moreover, TR4+/− mice showed a lower grade of histopathology than the control group. In conclusion, these results indicate that TR4 plays a key role in bladder cancer proliferation, and targeting TR4 would probably be a potential strategy for bladder cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document