infinite impulse response
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 92)

H-INDEX

18
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6502
Author(s):  
Nasru Minallah ◽  
Ishtiaque Ahmed ◽  
Jaroslav Frnda ◽  
Khurram S. Khattak

The widespread development in wireless technologies and the advancements in multimedia communication have brought about a positive impact on the performance of wireless transceivers. We investigate the performance of our three-stage turbo detected system using state-of-the-art high efficiency video coding (HEVC), also known as the H.265 video standard. The system makes use of sphere packing (SP) modulation with the combinational gain technique of layered steered space-time code (LSSTC). The proposed three-stage system is simulated for the correlated Rayleigh fading channel and the bit-error rate (BER) curve obtained after simulation is free of any floor formation. The system employs low complexity source-bit coding (SBC) for protecting the H.265 coded stream. An intermediate recursive unity-rate code (URC) with an infinite impulse response is employed as an inner precoder. More specifically, the URC assists in the prevention of the BER floor by distributing the information across the decoders. There is an observable gain in the BER and peak signal-to-noise ratio (PSNR) performances with the increasing value of minimum Hamming distance (dH,min) using the three-stage system. Convergence analysis of the proposed system is investigated through an extrinsic information transfer (EXIT) chart. Our proposed system demonstrates better performance of about 22 dB than the benchmarker utilizing LSSTC-SP for iterative source-channel detection, but without exploiting the optimized SBC schemes.


2021 ◽  
pp. 204-268
Author(s):  
Victor Lazzarini

This chapter now turns to the discussion of filters, which extend the notion of spectrum beyond signals into the processes themselves. A gentle introduction to the concept of delaying signals, aided by yet another variant of the Fourier transform, the discrete-time Fourier transform, allows the operation of filters to be dissected. Another analysis tool, in the form of the z-transform, is brought to the fore as a complex-valued version of the discrete-time Fourier transform. A study of the characteristics of filters, introducing the notion of zeros and poles, as well as finite impulse response (FIR) and infinite impulse response (IIR) forms, composes the main body of the text. This is complemented by a discussion of filter design and applications, including ideas related to time-varying filters. The chapter conclusion expands once more the definition of spectrum.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohan Kumar ◽  
Ranga Raju

Purpose Digital signal processing (DSP) applications such as finite impulse response (FIR) filter, infinite impulse response and wavelet transformation functions are mainly constructed using multipliers and adders. The performance of any digital applications is dependent on larger size multipliers, area and power dissipation. To optimize power and area, an efficient zero product and feeder register-based multiplier (ZP and FRBM) is proposed. Another challenging task in multipliers is summation of partial products (PP), results in more delay. To address this issue, the modified parallel prefix adder (PPA) is incorporated in multiplier design. In this work, different methods are studied and analyzed for designing FIR filter, optimized with respect to area, power dissipation, speed, throughput, latency and hardware utilization. Design/methodology/approach The distributed arithmetic (DA)-based reconfigurable FIR design is found to be suitable filter for software-defined radio (SDR) applications. The performance of adder and multipliers in DA-FIR filter restricts the area and power dissipation due to their complexity in terms of generation of sum and carry bits. The hardware implementation time of an adder can be reduced by using PPA which is based on Ling equation. The MDA-RFIR filter is designed for higher filter length (N), i.e. N = 64 with 64 taps and this design is developed using Verilog hardware description language (HDL) and implemented on field-programmable gate array. The design is validated for SDR channel equalizer; both RFIR and SDR are integrated as single system and implemented on Artix-7 development board of part name XC7A100tCSG324. Findings The MDA-RFIR for N = 64 is optimized about 33% in terms of area-delay, power-speed product and energy efficiency. The theoretical and practical comparisons have been done, and the practically obtained results are compared with existing DA-RFIR designs in terms of throughput, latency, area-delay, power-speed product and energy efficiency are better about 3.5 times, 31, 45 and 29%, respectively. Originality/value The MDA-RFIR for N = 64 is optimized about 33% in terms of area-delay, power-speed product and energy efficiency.


2021 ◽  
Vol 53 (4) ◽  
pp. 210401
Author(s):  
Endra Joelianto

In this paper, several forms of infinite impulse response (IIR) bandpass filters with constrained poles and zeros are presented and compared. The comparison includes the filter structure, the frequency ranges and a number of controlled parameters that affect computational efforts. Using the relationship between bandpass and notch filters, the two presented filters were originally developed for notch filters. This paper also proposes a second-order IIR bandpass filter structure that constrains poles and zeros and can be used as a  minimal parameter adaptive digital second-order filter. The proposed filter has a wider frequency range and more flexibility in the range values of the adaptation parameters.


Author(s):  
Dalal Hamza ◽  
Tariq Tashan

Adaptive processing for canceling noise is a powerful technology for signal processing that can completely remove background noise. In general, various adaptive filter algorithms are used, many of which can lack the stability to handle the convergence rate, the number of filter coefficient variations, and error accuracy within tolerances. Unlike traditional methods, to accomplish these desirable characteristics as well as to efficiently cancel noise, in this paper, the cancelation of noise is formulated as a problem of coefficient optimization, where the particle swarm optimization (PSO) is employed. The PSO is structured to minimize the error by using a very short segment of the corrupted speech. In contrast to the recent and conventional adaptive noise cancellation methods, the simulation results indicate that the proposed algorithm has better capability of noise cancelation. The results show great improvement in signal to noise ratio (SNR) of 96.07 dB and 124.54 dB for finite impulse response (FIR) and infinite impulse response (IIR) adaptive filters respectively.


2021 ◽  
Author(s):  
Yao Wang ◽  
Xiaohong Wang ◽  
Weiming Li ◽  
Siyu Ji ◽  
Tianshun Yang ◽  
...  

Abstract Sleep apnea is a kind of sleep disorder with a high prevalence rate. It is manifested as the abnormal stop of breathing during sleep and is highly dangerous to human health. The purpose of this research is to find a simple, and effective feature extraction method that can able to distinguish obstructive apnea events, central apnea events, and normal breathing events. Unlike conventional methods, the method illustrated in this study used the Infinite Impulse Response Butterworth Band pass filter to divide the Electroencephalogram (EEG) signal into 5, 7, 9 or 11 frequency sub-bands and then used the Welch method to extract the power features of these frequency sub-band signals, which were subsequently used as classifier input. Random forest, K-nearest neighbors and bagging classifiers were investigated. The results showed that in several different frequency sub-band division methods of EEG signals, the features extracted from the EEG signal that was divided into 11 frequency sub-bands were more conducive to the classification of sleep apnea events. The random forest classifier achieved the highest average accuracy, macro F1 and kappa coefficient in three types of events, which were 90.43%, 90.38% and 0.88, respectively. Compared with existing methods, the method used in the present study has higher classification performance.


Sign in / Sign up

Export Citation Format

Share Document