spectroscopic parameter
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1215
Author(s):  
Maria Czaja ◽  
Radosław Lisiecki ◽  
Rafał Juroszek ◽  
Tomasz Krzykawski

The cause of the split of 4A4E(4G) Mn2+ excited level measured on minerals spectra is discussed. It is our view that ∆E = |4E(4G) − 4A(4G)| should be considered an important spectroscopic parameter. Among the possible reasons for the energy levels splitting taken under consideration, such as the covalent bond theory, the geometric deformation of the coordination polyhedron and the lattice site’s symmetry, the first one was found to be inappropriate. Two studied willemite samples showed that the impurities occur in one of the two available lattice sites differently in both crystals. Moreover, it was revealed that the calculated crystal field Dq parameter can indicate which of the two non-equivalent lattice sites positions in the willemite crystal structure was occupied by Mn2+. The above conclusions were confirmed by X-ray structure measurements. Significant differences were also noted in the Raman spectra of these willemites.


Author(s):  
Athira M. John ◽  
Renjith Thomas ◽  
Sreeja P. Balakrishnan ◽  
Nabil Al-Zaqri ◽  
Ali Alsalme ◽  
...  

AbstractThe designing of a dye sensitised solar cell (DSSC) is one of the frontiers in harvesting solar energy as it provides an alternative to economic photovoltaic devices with increased efficiency. In this manuscript, we report a new methodology using experimental and theoretical data for the evaluation of the photosensitiser activity of organic dyes using theoretical simulations and experimental cell efficiency data. As a representative example, we designed a series of 54 novel pyrazole derivatives which are subjected to TD-DFT simulations (CAM-B3LYP/6-311G++ (2d, p)) and photovoltaic modelling. Data from computational simulations, as well as known experimental cells, are used for the calculation of photovoltaic efficiency. We selected pyrazole derivatives because of its proven use in DSSC as an effective dopant in a blended polymer electrolyte in nanocrystalline DSSC. Fine-tuning with the effect of substitution and with the π spacers at the ortho, meta and para positions for −OCH3, −OH, −CHO, −NO2 respectively were done. Enhanced efficiency of 7.439% was observed as compared to the standard cell of efficiency of 5.530%. An increase in efficiency was not observed with the effect of π spacers. The newly designed dyes demonstrate desirable energetic and spectroscopic parameter that can lead to efficient metal-free organic dye sensitiser for DSSC’s. The main advantage of this strategy is the incorporation of both simulated and experimental data. It will reduce the possible errors from the simulations and also, helps in performing time-consuming experimental studies.


2018 ◽  
Vol 619 ◽  
pp. A178 ◽  
Author(s):  
B. Barbuy ◽  
L. Muniz ◽  
S. Ortolani ◽  
H. Ernandes ◽  
B. Dias ◽  
...  

Context. NGC 6558 is a bulge globular cluster with a blue horizontal branch (BHB), combined with a metallicity of [Fe/H] ≈ −1.0. It is similar to HP 1 and NGC 6522, which could be among the oldest objects in the Galaxy. Element abundances in these clusters could reveal the nature of the first supernovae. Aims. We aim to carry out detailed spectroscopic analysis for four red giants of NGC 6558, in order to derive the abundances of the light elements C, N, O, Na, Al, the α-elements Mg, Si, Ca, Ti, and the heavy elements Y, Ba, and Eu. Methods. High-resolution spectra of four stars with FLAMES-UVES at VLT UT2-Kueyen were analysed. Spectroscopic parameter-derivation was based on excitation and ionization equilibrium of Fe I and Fe II. Results. This analysis results in a metallicity of [Fe/H] = − 1.17 ± 0.10 for NGC 6558. We find the expected α-element enhancements in O and Mg with [O/Fe] = +0.40, [Mg/Fe] = +0.33, and low enhancements in Si and Ca. Ti has a moderate enhancement of [Ti/Fe] = +0.22. The r-element Eu appears very enhanced with a mean value of [Eu/Fe] = +0.63. The first peak s-elements Y and Sr are also enhanced, these results have however to be treated with caution, given the uncertainties in the continuum definition; the use of neutral species (Sr I, Y I), instead of the dominant ionized species is another source of uncertainty. Ba appears to have a solar abundance ratio relative to Fe. Conclusions. NGC 6558 shows an abundance pattern that could be typical of the oldest inner bulge globular clusters, together with the pattern in the similar clusters NGC 6522 and HP 1. They show low abundances of the odd-Z elements Na and Al, and of the explosive nucleosynthesis α-elements Si, Ca, and Ti. The hydrostatic burning α-elements O and Mg are normally enhanced as expected in old stars enriched with yields from core-collapse supernovae, and the iron-peak elements Mn, Cu, Zn show low abundances, which is expected for Mn and Cu, but not for Zn. Finally, the cluster trio NGC 6558, NGC 6522, and HP 1 have relatively high abundances of first-peak heavy elements, variable second-peak element Ba, and the r-element Eu is enhanced. The latter is particularly high in NGC 6558.


2018 ◽  
Vol 18 (20) ◽  
pp. 15231-15259 ◽  
Author(s):  
Domenico Cimini ◽  
Philip W. Rosenkranz ◽  
Mikhail Y. Tretyakov ◽  
Maksim A. Koshelev ◽  
Filomena Romano

Abstract. This paper presents a general approach to quantify absorption model uncertainty due to uncertainty in the underlying spectroscopic parameters. The approach is applied to a widely used microwave absorption model (Rosenkranz, 2017) and radiative transfer calculations in the 20–60 GHz range, which are commonly exploited for atmospheric sounding by microwave radiometer (MWR). The approach, however, is not limited to any frequency range, observing geometry, or particular instrument. In the considered frequency range, relevant uncertainties come from water vapor and oxygen spectroscopic parameters. The uncertainty of the following parameters is found to dominate: (for water vapor) self- and foreign-continuum absorption coefficients, line broadening by dry air, line intensity, the temperature-dependence exponent for foreign-continuum absorption, and the line shift-to-broadening ratio; (for oxygen) line intensity, line broadening by dry air, line mixing, the temperature-dependence exponent for broadening, zero-frequency line broadening in air, and the temperature-dependence coefficient for line mixing. The full uncertainty covariance matrix is then computed for the set of spectroscopic parameters with significant impact. The impact of the spectroscopic parameter uncertainty covariance matrix on simulated downwelling microwave brightness temperatures (TB) in the 20–60 GHz range is calculated for six atmospheric climatology conditions. The uncertainty contribution to simulated TB ranges from 0.30 K (subarctic winter) to 0.92 K (tropical) at 22.2 GHz and from 2.73 K (tropical) to 3.31 K (subarctic winter) at 52.28 GHz. The uncertainty contribution is nearly zero at 55–60 GHz frequencies. Finally, the impact of spectroscopic parameter uncertainty on ground-based MWR retrievals of temperature and humidity profiles is discussed.


2018 ◽  
Author(s):  
Domenico Cimini ◽  
Philip W. Rosenkranz ◽  
Mikhail Yu Tretyakov ◽  
Maksim A. Koshelev ◽  
Filomena Romano

Abstract. This paper presents a general approach to quantify the absorption model uncertainty due to uncertainty in underlying spectroscopic parameters. The approach is applied to radiative transfer calculations in the 20–60 GHz range, which is commonly exploited for atmospheric sounding by microwave radiometer (MWR). The approach however is not limited to any frequency range, observing geometry, or particular instrument. In the considered frequency range, relevant uncertainties come from water vapor and oxygen spectroscopic parameters. The uncertainty of the following parameters is found to dominate: (for water vapor) self and foreign continuum absorption coefficients, line broadening by dry air, line intensity, temperature-dependence exponent for foreign continuum absorption, and line shift-to-broadening ratio; (for oxygen) line intensity, line broadening by dry air, line mixing, temperature-dependence exponent for broadening, zero-frequency line broadening in air, temperature-dependence coefficient for line mixing. The full uncertainty covariance matrix is then computed for the set of spectroscopic parameters with significant impact. The impact of the spectroscopic parameter uncertainty covariance matrix on simulated downwelling microwave brightness temperatures (TB) in the 20–60 GHz range is calculated for six atmospheric climatology conditions. The uncertainty contribution to simulated TB ranges from 0.30 K (sub-Arctic winter) to 0.92 K (tropical) at 22.2 GHz, and from 2.73 K (tropical) to 3.31 K (sub-Arctic winter) at 52.28 GHz. The uncertainty contribution is nearly zero at 55–60 GHz frequencies. Finally, the impact of spectroscopic parameter uncertainty on ground-based MWR retrievals of temperature and humidity profiles is discussed.


2017 ◽  
Vol 81 (6) ◽  
pp. 1439-1456 ◽  
Author(s):  
A. I. Apopei ◽  
G. Damian ◽  
N. Buzgar ◽  
A. Buzatu ◽  
P. Andráš ◽  
...  

AbstractNatural samples containing tetrahedrite–tennantite, bournonite–seligmannite and geocronite–jordanite from the Coranda-Hondol ore deposit, Romania, were investigated by Raman spectroscopy to determine its capability to provide estimates of solid solutions in three common and widespread sulfosalt mineral series. Raman measurements were performed on extended solid solution series (Td1 to Td97, Bnn25 to Bnn93 and Gcn24 to Gcn67, apfu). The tetrahedrite–tennantite and bournonite–seligmannite solid solution series show strong correlations between spectroscopic parameters ( position, relative intensity and shape of the Raman bands) and the Sb/(Sb+As) content ratio, while Raman spectra of geocronite–jordanite shows no evolution of Raman bands. In order to simplify the method used to estimate the Sb/(Sb+As) content ratio in tetrahedrite–tennantite and bournonite–seligmannite series, several linear equations of the first-order polynomial fit were obtained. The results are in good agreement with electron microprobe data. Moreover, a computer program was developed as an analytical tool for a fast and accurate determination of Sb/(Sb+As) content ratio by at least one spectroscopic parameter. These results indicate that Raman spectroscopy can provide direct information on the composition and structure of the tetrahedrite–tennantite and bournonite– seligmannite series.


Sign in / Sign up

Export Citation Format

Share Document