Due to its advantages, the hydraulic drive is widely used in road construction machines. Depending on its design, the share of the hydraulic drive, which is the most expensive unit of a road construction machine, accounts for thirty to eighty percent of all failures. Reliable hydraulic drive, provides, to a large extent, the reliability of the whole machine and the efficiency of the construction organization as a whole. The efficiency of the hydraulic drive of construction machines, and, as a consequence, the machines themselves, is ensured by a set of measures, among which the most important is the quality design, manufacture and operation, combined into a single structural system. Depending on the quality of cleaning of the working fluid, the service life of hydraulic machines can be increased or decreased several times. Accumulation of pollutants in the hydraulic drive, the hardness of which is significantly higher than the hardness of metals, causes rapid wear of the surfaces of hydraulic units and the service life is rapidly reduced. Cavitation in the pump is accompanied by a pulsation of fluid pressure and noise. These pulsations are due to the return flow of fluid from the discharge cavity of the pump, which is accompanied by hydraulic shocks and as a result of alternating shocks, a pressure pulsation in the discharge line of the pump. The amplitude of these pulsations can, under known conditions, reach a value that causes the destruction of the pump. The possibility of cavitation can be reduced by rational choice of modes of operation of the hydraulic system and the correct design of its units, but this phenomenon can be completely eliminated only by using auxiliary pumping pumps, as well as increasing the pressure in the suction line of the pump. On the basis of the analysis of perspective directions of improvement of the hydraulic drive of the excavator the following improved scheme of it is developed. Usually only high-flow hydraulic motors can be used in flow dividers. But in our case it is necessary that the device had, first of all, small mechanical losses and small cost, and accuracy of division of working liquid which follows on filters can be small. In the volume flow divider, hydraulic motors are used: gear, piston, vane, screw, roller. The simplest dividers of volume type are paired (connected by shafts) hydraulic motors of lamellar (vane) and roller types. Hydraulic motors in this scheme are flow measuring devices (dispensers), which supply for one revolution the volume of liquid, equal without taking into account the leaks in the hydraulic motor, its working volume. The use of a flow divider as a source of hydraulic energy makes it possible to improve the hydraulic drive by combining in a single system the purification of the working fluid and the ejector feed of the pump. The most promising, in terms of cost, are flow dividers based on vane and rotary hydraulic motors..