2 micron plasmid
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Damilare D. Akintade ◽  
Bhabatosh Chaudhuri

AbstractFK506-binding protein 2 (FKBP13) is a part of the immunophilin protein family involved in immunoregulation. It is also believed to operate as a factor in membrane cytoskeletal framework and as an ER chaperone. FKBP2 (FKBP13) and FKBP1 (FKBP12), known as immunophilins, are binding proteins for rapamycin and FK506, which are immunosuppressive drugs. It was suggested that immunophilin-like and immunophilin proteins play significant roles in regulating intracellular calcium and protein folding/sorting, acting as molecular chaperones. Within the 15 mammalian FKBPs known, FKBP1 is merely the only one proven to form complexes with rapamycin and FK506 in the cytosol and facilitate their T cells immunosuppressive effects, FKBP2 is a luminal protein of the endoplasmic reticulum (ER) and is reported to take part in protein folding in the ER. However, little is known about FKBP2 link with apoptosis (either as a pro or anti-apoptotic protein). In this study, FKPB2 protein was co-expressed with the pro-apoptotic protein Bax after a yeast-based human hippocampal cDNA library screening. The yeast strain carrying the Bax gene was transformed with an episomal 2-micron plasmid that encodes the HA-tagged FKBP2 gene. The resultant strain would allow co-expression of Bax and FKBP2 in yeast cells. The results presented here show that a protein involved in protein folding can play a role in protecting yeast cell from Bax-induced apoptosis.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009660
Author(s):  
Deepanshu Kumar ◽  
Hemant Kumar Prajapati ◽  
Anjali Mahilkar ◽  
Chien-Hui Ma ◽  
Priyanka Mittal ◽  
...  

Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Michelle Hays ◽  
Janet M Young ◽  
Paula F Levan ◽  
Harmit S Malik

Antagonistic coevolution with selfish genetic elements (SGEs) can drive evolution of host resistance. Here, we investigated host suppression of 2-micron (2μ) plasmids, multicopy nuclear parasites that have co-evolved with budding yeasts. We developed SCAMPR (Single-Cell Assay for Measuring Plasmid Retention) to measure copy number heterogeneity and 2μ plasmid loss in live cells. We identified three S. cerevisiae strains that lack endogenous 2μ plasmids and reproducibly inhibit mitotic plasmid stability. Focusing on the Y9 ragi strain, we determined that plasmid restriction is heritable and dominant. Using bulk segregant analysis, we identified a high-confidence Quantitative Trait Locus (QTL) with a single variant of MMS21 associated with increased 2μ instability. MMS21 encodes a SUMO E3 ligase and an essential component of the Smc5/6 complex, involved in sister chromatid cohesion, chromosome segregation, and DNA repair. Our analyses leverage natural variation to uncover a novel means by which budding yeasts can overcome highly successful genetic parasites.


2020 ◽  
Vol 47 (9) ◽  
pp. 6785-6792 ◽  
Author(s):  
Damilare D. Akintade ◽  
Bhabatosh Chaudhuri

Abstract Eukaryotic elongation factor 1A1 (eEF1A1) is central to translational activity. It is involved in complexes that form signal transduction with protein kinase C, as well as being a signal transducer and activator of transcription 3. eEF1A1 and eEF1A2 are isoforms of the alpha subunit of elongating factor 1 complex. It has been reported that eEF1A1 is expressed in most human tissues but the brain, skeletal muscle and heart. eEF1A1 has been linked to both apoptosis and anti-apoptotic activities. In this study, eEF1A1 was co-expressed with Bax, a proapoptotic protein via heterologous expression of recombinant DNA in yeast cells. Assays were carried out to monitor the fate and state of yeast cells when eEF1A1 was co-expressed with Bax. The yeast strain (bearing an integrated copy of the Bax gene) was transformed with an episomal 2-micron plasmid that encodes HA-tagged eEF1A1 gene. The resultant strain would allow co-expression of Bax and eEF1A1 in yeast cells, Bax being under the control of the GAL1 promoter, while the PGK1 promoter drives eEF1A1 expression. Bcl 2A1, a known anti-apoptotic protein, was also co-expressed with Bax in yeast cells as a positive control, to study the anti-apoptotic characteristic of eEF-1A1. The part eEF1A1 plays in apoptosis has been contentious, amidst the pro and anti-apoptotic properties of eEF1A1, it was shown clearly, in this study that eEF1A1 portrays only anti-apoptotic property in the presence of pro-apoptotic protein, Bax.


2020 ◽  
Author(s):  
Hemant Kumar Prajapati ◽  
Deepanshu Kumar ◽  
Xian-Mei Yang ◽  
Chien-Hui Ma ◽  
Priyanka Mittal ◽  
...  

AbstractEquipartitioning by chromosome hitchhiking and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals plasmid presence near centromeres and telomeres in mitotic cells, with a preference towards the latter. The observed correlation of plasmid missegregation with non-disjunction of rDNA and telomeres under Cdc14 inactivation, higher plasmid missegregation upon induced missegregation of chromosome XII but not chromosome III, requirement of condensin for plasmid stability and the interaction of the condensin subunit Brn1 with the plasmid partitioning system lend functional credence to condensed chromatin being favored for plasmid tethering. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that also hitchhike on host chromosomes for their stable maintenance.


2019 ◽  
Vol 15 (3) ◽  
pp. 109
Author(s):  
Phung Thi Thu Huong ◽  
Tran Hong Diem ◽  
Nguyen Luong Hieu Hoa ◽  
Vo Thanh Sang ◽  
Le Van Minh ◽  
...  

Mus81 is a structure-selective endonuclease which constitutes an alternative pathway in parallel with the helicase-topoisomerase Sgs1-Top3-Rmi1 complex to resolve a number of DNA intermediates during DNA replication, repair, and homologous recombination. Previously, it was shown that the N-terminal region of Mus81 was required for its in vivo function in a redundant manner with Sgs1; sgs1Δmus81Δ100N cells are sensitive to DNA damaging agents. In this study, a single-copy suppressor screening to seek for a factor(s) that could rescue the drug sensitivity of sgs1Δmus81Δ100N cells was performed and revealed that Flp1, a site-specific recombinase 1 encoded on the 2-micron plasmid was a suppressor. This result suggests a function of Flp1 in coordination with Mus81 and Sgs1 to resolve the recombinant DNA intermediates.


2017 ◽  
Author(s):  
Alex N. Salazar ◽  
Arthur R. Gorter de Vries ◽  
Marcel van den Broek ◽  
Melanie Wijsman ◽  
Pilar de la Torre Cortés ◽  
...  

AbstractThe haploid Saccharomyces cerevisiae strain CEN.PK113-7D is a popular model system for metabolic engineering and systems biology research. Current genome assemblies are based on short-read sequencing data scaffolded based on homology to strain S288C. However, these assemblies contain large sequence gaps, particularly in subtelomeric regions, and the assumption of perfect homology to S288C for scaffolding introduces bias.In this study, we obtained a near-complete genome assembly of CEN.PK113-7D using only Oxford Nanopore Technology’s MinION sequencing platform. 15 of the 16 chromosomes, the mitochondrial genome, and the 2-micron plasmid are assembled in single contigs and all but one chromosome starts or ends in a telomere cap. This improved genome assembly contains 770 Kbp of added sequence containing 248 gene annotations in comparison to the previous assembly of CEN.PK113-7D. Many of these genes encode functions determining fitness in specific growth conditions and are therefore highly relevant for various industrial applications. Furthermore, we discovered a translocation between chromosomes III and VIII which caused misidentification of a MAL locus in the previous CEN.PK113-7D assembly. This study demonstrates the power of long-read sequencing by providing a high-quality reference assembly and annotation of CEN.PK113-7D and places a caveat on assumed genome stability of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document