bone resorption marker
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 50)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Etienne Cavalier ◽  
Pierre Lukas ◽  
Pierre Delanaye

Abstract Objectives Tartrate-resistant acid phosphatase, isoform 5b (TRACP-5b) is a bone resorption marker not influenced by renal function or food intake. TRACP-5b can be measured with Nittobo Medical enzymatic-immunoassay and IDS-iSYS automated immunoassay. We evaluated the Nittobo assay and established reference ranges for a Western-European population. We compared Nittobo and IDS results in different well-defined clinical populations. Methods We established the limits of detection and quantification (LOD-LOQ), linearity, imprecision and the reference ranges in 119 males, 50 women (<45 years) and 120 women (>60 years) for TRACP-5b with the Nittobo assay. We compared both assays in 30 hemodialyzed (HD), and 40 stage 3–5 patients suffering from chronic kidney disease (CKD), 40 patients suffering from rheumatoid arthritis and osteoporosis and 80 post-menopausal women. We measured TRACP-5b, β-crosslaps (β-CTX), bone alkaline phosphatase (B-ALP) and PTH in 20 hemodialyzed (HD) and 40 CKD patients. Results LOD and LOQ were 0.02 and 0.35 U/L. CV ranged from 8.3 to 4.3% (2/5 samples presenting CV > desirable CV). Method was linear up to of 11.3 U/L. Upper and lower limits of normality were 0.8–7.6 U/L in men, 0.9–4.7 U/L in women <45 and 0.9–7.1 U/L in women >60. The regression equation between the 2 methods was Nittobo = 1.13 (95% CI: 1.09–1.16) × iSYS − 0.4 (95% CI: −0.5; −0.3). TRACP-5b and b-ALP were in their respective reference ranges for most of CKD and HD patients. That was not the case for β-CTX, which increased with decreasing eGFR. Conclusions Nittobo TRACP-5b presents interesting analytical features and a good concordance with IDS iSYS. These methods could thus potentially be harmonized.


2021 ◽  
Vol 9 (12) ◽  
pp. 2563
Author(s):  
Satoshi Kosaka ◽  
Yuji Nadatani ◽  
Akira Higashimori ◽  
Koji Otani ◽  
Kosuke Fujimoto ◽  
...  

We determined the bone mineral density (BMD) and the expression of serum bone formation marker (procollagen type I N-terminal propeptide: PINP) and bone resorption marker (C-terminal telopeptide of collagen: CTX) by ELISA to evaluate ovariectomy-induced osteoporosis in ovariectomized (OVX) mice. The intestinal microbiota of the mice was assessed using 16S rRNA gene sequencing. OVX mice exhibited a lower BMD of 87% with higher serum levels of CTX and PINP compared to sham-operated (sham) mice. The cecum microbiome of OVX mice showed lower bacterial diversity than that of sham mice. TNFα mRNA levels in the colon were 1.6 times higher, and zonula occludens-1 mRNA and protein expression were lower in OVX mice than in sham mice, suggesting that ovariectomy induced inflammation and increased intestinal permeability. Next, we used antibiotic treatment followed by fecal microbiota transplantation (FMT) to remodel the gut microbiota in the OVX mice. A decrease in PINP was observed in antibiotic-treated mice, while there was no change in BMD or CTX between mice with and without antibiotic treatment. Oral transplantation of the luminal cecal content of OVX or sham mice to antibiotic-treated mice did not affect the BMD or PINP and CTX expression. Additionally, transplantation of the luminal contents of OVX or sham mice to antibiotic-treated OVX mice had similar effects on BMD, PINP, and CTX. In conclusion, although ovariectomy induces dysbiosis in the colon, the changes in the gut microbiota may only have a minor role in ovariectomy-induced osteoporosis.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3456
Author(s):  
Britta Dobenecker ◽  
Ellen Kienzle ◽  
Stephanie Siedler

Elevated serum phosphate concentrations are an established risk factor for cardiovascular disease and mortality in chronic kidney disease in various species. Independent associations of other parameters of phosphorus metabolism, such as phosphorus intake from different sources and serum concentrations of phosphorus, as well as parameters involved in the regulation, such as parathyroid hormone (PTH) or markers of bone turnover, have been studied in less detail. Therefore, the serum kinetics of phosphate, PTH, and the bone resorption marker bone-specific alkaline phosphatase (BAP) were investigated after 18 days of feeding a control diet and diets supplemented with eight different organic and inorganic phosphate sources aiming at 1.8% phosphorus per dry matter and calcium to phosphorus ratio between 1.3 and 1.7 to 1. Eight healthy beagle dogs (f/m, 2–4 years, 12.9 ± 1.4 kg body weight) were available for the trial. Highly significant differences in the serum kinetics of phosphorus, PTH, and BAP with the highest postprandial levels after feeding highly water-soluble sodium and potassium phosphates were found. We conclude that the use of certain inorganic phosphates in pet food is potentially harmful and should be restricted.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4226
Author(s):  
Sakda Arj-Ong Vallibhakara ◽  
Katanyuta Nakpalat ◽  
Areepan Sophonsritsuk ◽  
Chananya Tantitham ◽  
Orawin Vallibhakara

Vitamin E is a strong anti-oxidative stress agent that affects the bone remodeling process. This study evaluates the effect of mixed-tocopherol supplements on bone remodeling in postmenopausal osteopenic women. A double-blinded, randomized, placebo-controlled trial study was designed to measure the effect of mixed-tocopherol on the bone turnover marker after 12 weeks of supplementation. All 52 osteopenic postmenopausal women were enrolled and allocated into two groups. The intervention group received mixed-tocopherol 400 IU/day, while the control group received placebo tablets. Fifty-two participants completed 12 weeks of follow-up. Under an intention-to-treat analysis, vitamin E produced a significant difference in the mean bone resorption marker (serum C-terminal telopeptide of type I collagen (CTX)) compared with the placebo group (−0.003 ± 0.09 and 0.121 ± 0.15, respectively (p < 0.001)). In the placebo group, the CTX had increased by 35.3% at 12 weeks of supplementation versus baseline (p < 0.001), while, in the vitamin E group, there was no significant change of bone resorption marker (p < 0.898). In conclusion, vitamin E (mixed-tocopherol) supplementation in postmenopausal osteopenic women may have a preventive effect on bone loss through anti-resorptive activity.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6820
Author(s):  
Hyung Jin Lim ◽  
Eun-Jae Park ◽  
Yeong-Seon Won ◽  
Seon Gyeong Bak ◽  
Sun Hee Cheong ◽  
...  

Osteoporosis is characterized by the deterioration of bone structures and decreased bone mass, leading to an increased risk of fracture. Estrogen deficiency in postmenopausal women and aging are major factors of osteoporosis and are some of the reasons for reduced quality of life. In this study, we investigated the effects of n-trans-hibiscusamide (NHA) and its derivative 4-O-(E)-feruloyl-N-(E)-hibiscusamide (HAD) on receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL)-induced osteoclast differentiation and an ovariectomized osteoporosis mouse model. NHA and HAD significantly inhibited the differentiation of osteoclasts from bone marrow-derived macrophages (BMMs) and the expression of osteoclast differentiation-related genes. At the molecular level, NHA and HAD significantly downregulated the phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules. However, Akt and NF-κB phosphorylation was inhibited only after NHA or HAD treatment. In the ovariectomy (OVX)-induced osteoporosis model, both NHA and HAD effectively improved trabecular bone structure. C-terminal telopeptide (CTX), a bone resorption marker, and RANKL, an osteoclast stimulation factor, were significantly reduced by NHA and HAD. The tartrate-resistant acid phosphatase (TRAP)-stained area, which indicates the osteoclast area, was also decreased by these compounds. These results show the potential of NHA and HAD as therapeutic agents for osteoporosis.


2021 ◽  
Vol 6 (5) ◽  
pp. 116-126
Author(s):  
T. V. Riabenko ◽  
◽  
O. V. Korenkov ◽  
T. M. Kovaliuk

The occurrence of fractures in the development of cancer in the body is due to changes in bone metabolism in the form of osteoporosis and metastatic bone damage. Their appearance leads to the postponement or cessation of treatment of cancer, which affects the life expectancy of such patients and the chances of recovery. Antitumor chemotherapy, as one of the main methods of cancer treatment, is prescribed for long-term courses and affects the healing of fractures. However, according to the literature, the effect of antitumor chemotherapeutics on reparative regeneration is poorly understood today. The purpose of the work is to study the morphological features of reparative osteogenesis under the influence of antitumor chemotherapy. Materials and methods. The study was performed on 96 white laboratory male rats 7 months of age weighing 230±10 g. All animals had a perforated defect with a diameter of 2 mm spherical cutter to the bone marrow canal in the middle third of the femoral shaft. Animals were divided into control (n = 24, without chemotherapy) and three experimental groups (I, II, III, n = 72), which after injury and every 21 days of the study were administered intraperitoneal anticancer chemotherapeutics: I (n = 24) – doxorubicin (60 mg / m²), II (n = 24) – 5-fluorouracil (600 mg / m²), III (n = 24) – methotrexate (40 mg / m²). On the 15th, 30th, 45th, 60th days after injury, the animals were removed from the experiment, followed by removal of the injured long tubular bones. Histological preparations stained with hematoxylin-eosin, followed by their morphometry, scanning electron microscopy with the method of X-ray energy dispersion spectroscopy, immunohistochemical examination were performed. Results and discussion. Antitumor chemotherapeutics causes delayed callus formation, which is manifested by an increase in the area of connective and reticulofibrous bone tissue in the regenerate, along with the slow formation of lamellar bone tissue. Chemotherapy leads to disorders of phosphorus-calcium metabolism both in the regenerate and in the maternal bone in the form of reducing the intensity of mineralization of the newly formed bone matrix and slowing down the remodeling activity of the maternal bone. Chemotherapy is accompanied by an increase in the expression of the bone resorption marker cathepsin K and a decrease in the expression of the osteopontin bone marker, which indicates a delay in the formation of regenerate in the area of injury and a decrease in the rate of reparative regeneration. Conclusion. The most pronounced delay in the processes of remodeling of bone regenerate was found with the use of doxorubicin and methotrexate, while 5-fluorouracil showed less inhibitory effect on these processes


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3197
Author(s):  
Nina Wittorff Jensen ◽  
Kim Katrine Bjerring Clemmensen ◽  
Marie Møller Jensen ◽  
Hanne Pedersen ◽  
Kristine Færch ◽  
...  

Gut-derived hormones have been suggested to play a role in bone homeostasis following food intake, although the associations are highly complex and not fully understood. In a randomized, two-day cross-over study on 14 healthy individuals, we performed postprandial time-course studies to examine the associations of the bone remodeling markers carboxyl-terminal collagen type I crosslinks (CTX) and procollagen type 1 N-terminal propeptide (P1NP) with the gut hormones glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY) using two different meal types—a standardized mixed meal (498 kcal) or a granola bar (260 kcal). Plasma concentrations of total GIP, total GLP-1, total PYY, CTX, and P1NP were measured up to 240 min after meal intake, and the incremental area under the curve (iAUC) for each marker was calculated. The iAUC of CTX and P1NP were used to assess associations with the iAUC of GIP, GLP-1, and PYY in linear mixed effect models adjusted for meal type. CTX was positively associated with GIP and GLP-1, and it was inversely associated with PYY (all p < 0.001). No associations of P1NP with GIP or GLP-1 and PYY were found. In conclusion, the postprandial responses of the gut hormones GIP, GLP-1, and PYY are associated with the bone resorption marker CTX, supporting a link between gut hormones and bone homeostasis following food intake.


2021 ◽  
pp. 1-12
Author(s):  
Mariola Grez-Capdeville ◽  
Thomas D. Crenshaw

Abstract Phosphorus requirements of reproducing sows were estimated using 24-h urinary P excretion. Thirty-six multiparous sows were fed one of six maize–soybean meal-based diets with total P ranging from 0·40 to 0·80 % in 0·08 % increments with a constant Ca:total P ratio (1·25:1). Diets were fed from day 7·5 ± 1 after breeding until the end of lactation (day 26 ± 1). Urine samples were collected in mid and late gestation (days 77·1 ± 2 and 112·4 ± 1) and early and late lactation (days 4·5 ± 1 and 18·2 ± 1). Phosphorus requirements were estimated using linear and nonlinear regression models. Based on a single 24-h urinary P excretion, estimated daily dietary total P requirements in mid and late gestation were 10·3 g (6·0 g standardised total tract digestible P, STTD P), and estimates for early and late lactation were 31·1 g (16·6 g STTD P) and 40·3 g (22·1 g STTD P), respectively. Plasma P and Ca concentrations were maintained within normal ranges at the estimated levels of P requirements. No differences among treatments were observed for plasma parathyroid hormone (P ≥ 0·06) and bone formation marker (P ≥ 0·16). In lactation, bone resorption marker decreased (P ≤ 0·001) as sows consumed more P. Among the analysed variables, urinary P was the most sensitive response to changes in dietary P intake. Urinary P excretion offers a practical method to estimate P requirements in sows. Our recommended daily total P requirements are 10·3 g for gestation and 35·7 g for lactation.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3096
Author(s):  
Urszula Razny ◽  
Joanna Goralska ◽  
Philip C. Calder ◽  
Anna Gruca ◽  
Caroline E. Childs ◽  
...  

Weight loss contributes to an increased risk of hip fracture, especially in postmenopausal women. Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation could diminish the adverse effect of weight loss on bone health. The aim of this randomized, placebo-controlled, double-blind parallel trial was to investigate the effect of caloric restriction and n-3 PUFA supplement intake on osteogenic markers (carboxylated osteocalcin (Gla-OC); procollagen I N-terminal propeptide (PINP)), as well as a bone resorption marker (C-terminal telopeptide of type I collagen (CTX-I)) in a serum of 64 middle aged individuals (BMI 25–40 kg/m2) with abdominal obesity. Bone remodeling, metabolic and inflammatory parameters and adipokines were determined before and after 3 months of an isocaloric diet (2300–2400 kcal/day) or a low-calorie diet (1200 kcal/day for women and 1500 kcal/day for men) along with n-3 PUFA (1.8 g/day) or placebo capsules. CTX-I and adiponectin concentrations were increased following 7% weight loss independently of supplement use. Changes in CTX-I were positively associated with changes in adiponectin level (rho = 0.25, p = 0.043). Thus, an increase in serum adiponectin caused by body weight loss could adversely affect bone health. N-3 PUFAs were without effect.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maryam Abshirini ◽  
Jane Coad ◽  
Frances M. Wolber ◽  
Pamela von Hurst ◽  
Matthew R. Miller ◽  
...  

Abstract Background New Zealand Greenshell™ mussels (GSM; Perna canaliculus) have recently been shown to decrease cartilage degradation in a rat model of induced metabolic osteoarthritis (MetOA). However, this effect has not been investigated in human subjects. This study aims to determine the effect of GSM powder on biomarkers of cartilage metabolism, bone resorption, and inflammation in New Zealand healthy overweight/obese postmenopausal women who are at early stage or at high risk of OA. Method Fifty overweight or obese (BMI 25–35 kg/m2) postmenopausal women (aged 55–75 years) will be recruited by advertisement. Participants will be randomized based on a double-blind randomization schedule and stratified randomization based on BMI and age distribution. The participant will be assigned with a 1:1 allocation ratio to receive 3 g/d whole meat GSM powder or placebo (sunflower seed protein) for 12 weeks. Data on socio-demographics, physical activity, and dietary intake will be collected for each subject. Cartilage turnover biomarkers [(C-telopeptide of type II collagen (CTX-II), C-propeptide of type II procollagen (CPII), Cartilage oligomeric matrix protein (COMP)], and bone resorption marker (CTX-I) will be measured in blood and urine samples. Inflammatory status (hs-CRP and cytokine panel) will be assessed and iron status will be measured. Body composition including fat mass (FM), lean mass (LM), and fat percentage will be measured using dual-energy X-ray absorptiometry (DXA). Joint pain and knee function will be assessed using a 100-mm visual analog scale (VAS) and the Knee Injury and Osteoarthritis Outcome Score (KOOS) questionnaire, respectively. Discussion This trial will be the first to explore the effects of whole meat GSM powder on cartilage turnover, bone resorption, and inflammation biomarkers in overweight/obese postmenopausal women. The results from this trial will provide evidence on the efficacy of GSM in the prevention of OA. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12620000413921p. Registration on 27 March 2020.


Sign in / Sign up

Export Citation Format

Share Document