polygenic risk score
Recently Published Documents


TOTAL DOCUMENTS

973
(FIVE YEARS 793)

H-INDEX

30
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Tianyuan Lu ◽  
Vincenzo Forgetta ◽  
J. Brent Richards ◽  
Celia Greenwood

Abstract Genomic risk prediction is on the emerging path towards personalized medicine. However, the accuracy of polygenic prediction varies strongly in different individuals. In this study, based on up to 352,277 White British participants in the UK Biobank, we constructed polygenic risk scores for 15 physiological and biochemical quantitative traits after performing genome-wide association studies (GWASs). We identified 185 polygenic prediction variability quantitative trait loci (pvQTLs) for 11 traits by Levene’s test among 254,376 unrelated individuals. We validated the effects of pvQTLs using an independent test set of 58,927 individuals. A score aggregating 51 pvQTL SNPs for triglycerides had the strongest Spearman correlation of 0.185 (p-value < 1.0x10−300) with the squared prediction errors. We found a strong enrichment of complex genetic effects conferred by pvQTLs compared to risk loci identified in GWASs, including 89 pvQTLs exhibiting dominance effects. Incorporation of dominance effects into polygenic risk scores significantly improved polygenic prediction for triglycerides, low-density lipoprotein cholesterol, vitamin D, and platelet. After including 87 dominance effects for triglycerides, the adjusted R2 for the polygenic risk score had an 8.1% increase on the test set. In addition, 108 pvQTLs had significant interaction effects with measured environmental or lifestyle exposures. In conclusion, we have discovered and validated genetic determinants of polygenic prediction variability for 11 quantitative biomarkers, and partially profiled the underlying complex genetic effects. These findings may assist interpretation of genomic risk prediction in various contexts, and encourage novel approaches for constructing polygenic risk scores with complex genetic effects.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Amanda Ly ◽  
Beate Leppert ◽  
Dheeraj Rai ◽  
Hannah Jones ◽  
Christina Dardani ◽  
...  

AbstractHigher prevalence of autism in offspring born to mothers with rheumatoid arthritis has been reported in observational studies. We investigated (a) the associations between maternal and offspring’s own genetic liability for rheumatoid arthritis and autism-related outcomes in the offspring using polygenic risk scores (PRS) and (b) whether the effects were causal using Mendelian randomization (MR). Using the latest genome-wide association (GWAS) summary data on rheumatoid arthritis and individual-level data from the Avon Longitudinal Study of Parents and Children, United Kingdom, we constructed PRSs for maternal and offspring genetic liability for rheumatoid arthritis (single-nucleotide polymorphism [SNP] p-value threshold 0.05). We investigated associations with autism, and autistic traits: social and communication difficulties, coherence, repetitive behaviours and sociability. We used modified Poisson regression with robust standard errors. In two-sample MR analyses, we used 40 genome-wide significant SNPs for rheumatoid arthritis and investigated the causal effects on risk for autism, in 18,381 cases and 27,969 controls of the Psychiatric Genetics Consortium and iPSYCH. Sample size ranged from 4992 to 7849 in PRS analyses. We found little evidence of associations between rheumatoid arthritis PRSs and autism-related phenotypes in the offspring (maternal PRS on autism: RR 0.89, 95%CI 0.73–1.07, p = 0.21; offspring’s own PRS on autism: RR 1.11, 95%CI 0.88–1.39, p = 0.39). MR results provided little evidence for a causal effect (IVW OR 1.01, 95%CI 0.98–1.04, p = 0.56). There was little evidence for associations between genetic liability for rheumatoid arthritis on autism-related outcomes in offspring. Lifetime risk for rheumatoid arthritis has no causal effects on autism.


2022 ◽  
Author(s):  
Alexander S Hatoum ◽  
Sarah M.C. Colbert ◽  
Emma C Johnson ◽  
Spencer B. Huggett ◽  
Joseph D. Deak ◽  
...  

Genetic liability to substance use disorders can be parsed into loci conferring general and substance-specific addiction risk. We report a multivariate genome-wide association study that disaggregates general and substance-specific loci for problematic alcohol use, problematic tobacco use, and cannabis and opioid use disorders in a sample of 1,025,550 individuals of European and 92,630 individuals of African descent. Nineteen loci were genome-wide significant for the general addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries PDE4B was significant (among others), suggesting dopamine regulation as a cross-trait vulnerability. The addiction-rf polygenic risk score was associated with substance use disorders, psychopathologies, somatic conditions, and environments associated with the onset of addictions. Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis, 1 for opioids) included metabolic and receptor genes. These findings provide insight into the genetic architecture of general and substance-specific use disorder risk that may be leveraged as treatment targets.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
James J. Yang ◽  
Xi Luo ◽  
Elisa M. Trucco ◽  
Anne Buu

Abstract Background/aim The polygenic risk score (PRS) shows promise as a potentially effective approach to summarize genetic risk for complex diseases such as alcohol use disorder that is influenced by a combination of multiple variants, each of which has a very small effect. Yet, conventional PRS methods tend to over-adjust confounding factors in the discovery sample and thus have low power to predict the phenotype in the target sample. This study aims to address this important methodological issue. Methods This study proposed a new method to construct PRS by (1) approximating the polygenic model using a few principal components selected based on eigen-correlation in the discovery data; and (2) conducting principal component projection on the target data. Secondary data analysis was conducted on two large scale databases: the Study of Addiction: Genetics and Environment (SAGE; discovery data) and the National Longitudinal Study of Adolescent to Adult Health (Add Health; target data) to compare performance of the conventional and proposed methods. Result and conclusion The results show that the proposed method has higher prediction power and can handle participants from different ancestry backgrounds. We also provide practical recommendations for setting the linkage disequilibrium (LD) and p value thresholds.


2022 ◽  
Author(s):  
Shaan Khurshid ◽  
Julieta Lazarte ◽  
James Pirruccello ◽  
Lu-Chen Weng ◽  
Seung Hoan Choi ◽  
...  

Increased left ventricular (LV) mass (LVM) and LV hypertrophy (LVH) are risk markers for adverse cardiovascular events, and may indicate an underlying cardiomyopathy. Cardiac magnetic resonance (CMR) is the gold standard for LVM estimation, but is challenging to obtain at scale, which has limited the power of prior genetic analyses. In the current study, we performed a genome-wide association study (GWAS) of CMR-derived LVM indexed to body surface area (LVMI) estimated using a deep learning algorithm within nearly 50,000 participants from the UK Biobank. We identified 12 independent associations (1 known at TTN and 11 novel) meeting genome-wide significance, implicating several candidate genes previously associated with cardiac contractility and cardiomyopathy. Greater CMR-derived LVMI was associated with higher risk of incident dilated (hazard ratio [HR] 2.58 per 1-SD increase, 95% CI 2.10-3.17) and hypertrophic (HR 2.62, 95% CI 2.09-3.30) cardiomyopathies. A polygenic risk score (PRS) for LVMI was also associated with incident hypertrophic cardiomyopathy within a separate set of UK Biobank participants (HR] 1.12, 95% CI 1.01-1.12) and among individuals in an external Mass General Brigham dataset (HR 1.18, 95% CI 1.01-1.37). In summary, using CMR-derived LVM available at scale, we have identified 12 common variants associated with LVMI (11 novel) and demonstrated that both CMR-derived and genetically determined LVMI are associated with risk of incident cardiomyopathy.


2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Dilini M. Kothalawala ◽  
Latha Kadalayil ◽  
John A. Curtin ◽  
Clare S. Murray ◽  
Angela Simpson ◽  
...  

Genome-wide and epigenome-wide association studies have identified genetic variants and differentially methylated nucleotides associated with childhood asthma. Incorporation of such genomic data may improve performance of childhood asthma prediction models which use phenotypic and environmental data. Using genome-wide genotype and methylation data at birth from the Isle of Wight Birth Cohort (n = 1456), a polygenic risk score (PRS), and newborn (nMRS) and childhood (cMRS) methylation risk scores, were developed to predict childhood asthma diagnosis. Each risk score was integrated with two previously published childhood asthma prediction models (CAPE and CAPP) and were validated in the Manchester Asthma and Allergy Study. Individually, the genomic risk scores demonstrated modest-to-moderate discriminative performance (area under the receiver operating characteristic curve, AUC: PRS = 0.64, nMRS = 0.55, cMRS = 0.54), and their integration only marginally improved the performance of the CAPE (AUC: 0.75 vs. 0.71) and CAPP models (AUC: 0.84 vs. 0.82). The limited predictive performance of each genomic risk score individually and their inability to substantially improve upon the performance of the CAPE and CAPP models suggests that genetic and epigenetic predictors of the broad phenotype of asthma are unlikely to have clinical utility. Hence, further studies predicting specific asthma endotypes are warranted.


2022 ◽  
Author(s):  
Flavia Hodel ◽  
Olivier Naret ◽  
Clara Bonnet ◽  
Nicole Brenner ◽  
Noemi Bender ◽  
...  

Multiple human pathogens establish chronic, sometimes life-long infections. Even if they are often latent, these infections can trigger some degree of local or systemic immune response, resulting in chronic low-grade inflammation. There remains an incomplete understanding of the potential contribution of both persistent infections and human genetic variation on chronic low-grade inflammation. We searched for potential associations between seropositivity for 13 persistent pathogens and the plasma levels of the inflammatory biomarker C-reactive protein (CRP), using data collected in the context of the UK Biobank and the CoLaus|PsyCoLaus Study, two large population-based cohorts. We performed backward stepwise regression starting with the following potential predictors: serostatus for each pathogen, polygenic risk score for CRP, as well as demographic and clinical factors known to be associated with CRP. We found evidence for an association between Chlamydia trachomatis (P-value = 5.04e-3) and Helicobacter pylori (P-value = 8.63e-4) seropositivity and higher plasma levels of CRP. We also found an association between pathogen burden and CRP levels (P-value = 4.12e-4). These results improve our understanding of the relationship between persistent infections and chronic inflammation, an important determinant of long-term morbidity in humans.


2022 ◽  
pp. 1-10
Author(s):  
Wenjun Su ◽  
Aihua Yuan ◽  
Yingying Tang ◽  
Lihua Xu ◽  
Yanyan Wei ◽  
...  

Abstract Background Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported. Methods Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts. Results Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)–left inferior temporal gyrus (ITG), right IFG–left ITG, right IFG–left middle frontal gyrus (MFG), and right IFG–right MFG in the FES group. Conclusion Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.


2022 ◽  
Author(s):  
Tianyuan Lu ◽  
Vincenzo Forgetta ◽  
J Brent Richards ◽  
Celia MT Greenwood

Family history of complex traits may reflect transmitted rare pathogenic variants, intrafamilial shared exposures to environmental and lifestyle factors, as well as a common genetic predisposition. We developed a latent factor model to quantify trait heritability in excess of that captured by a common variant-based polygenic risk score, but inferable from family history. We applied our model to predict adult height for 941 children in the Avon Longitudinal Study of Parents and Children cohort as well as 11 complex diseases for ~400,000 European ancestry participants in the UK Biobank. Parental history brought consistent significant improvements in the predictive power of polygenic risk prediction. For instance, a joint predictor was able to explain ~55% of the total variance in sex-adjusted adult height z-scores, close to the estimated heritability. Our work showcases an innovative paradigm for risk calculation, and supports incorporation of family history into polygenic risk score-based genetic risk prediction models.


2022 ◽  
pp. 1-10
Author(s):  
Anita Schick ◽  
Ruud van Winkel ◽  
Bochao D. Lin ◽  
Jurjen J. Luykx ◽  
Sonja M.C. de Zwarte ◽  
...  

Abstract Background There is evidence for a polygenic contribution to psychosis. One targetable mechanism through which polygenic variation may impact on individuals and interact with the social environment is stress sensitization, characterized by elevated reactivity to minor stressors in daily life. The current study aimed to investigate whether stress reactivity is modified by polygenic risk score for schizophrenia (PRS) in cases with enduring non-affective psychotic disorder, first-degree relatives of cases, and controls. Methods We used the experience sampling method to assess minor stressors, negative affect, positive affect and psychotic experiences in 96 cases, 79 first-degree relatives, i.e. siblings, and 73 controls at wave 3 of the Dutch Genetic Risk and Outcome of Psychosis (GROUP) study. Genome-wide data were collected at baseline to calculate PRS. Results We found that associations of momentary stress with psychotic experiences, but not with negative and positive affect, were modified by PRS and group (all pFWE<0.001). In contrast to our hypotheses, siblings with high PRS reported less intense psychotic experiences in response to momentary stress compared to siblings with low PRS. No differences in magnitude of these associations were observed in cases with high v. low level of PRS. By contrast, controls with high PRS showed more intense psychotic experiences in response to stress compared to those with low PRS. Conclusions This tentatively suggests that polygenic risk may operate in different ways than previously assumed and amplify reactivity to stress in unaffected individuals but operate as a resilience factor in relatives by attenuating their stress reactivity.


Sign in / Sign up

Export Citation Format

Share Document