Abstract
Let p be a prime number and let ${\mathbb{K}}$ be a field containing a root of 1 of order p. If the absolute Galois group $G_{\mathbb{K}}$ satisfies $\dim\, H^1(G_{\mathbb{K}},\mathbb{F}_p)\lt\infty$ and $\dim\, H^{\,2}(G_{\mathbb{K}},\mathbb{F}_p)=1$, we show that L. Positselski’s and T. Weigel’s Koszulity conjectures are true for ${\mathbb{K}}$. Also, under the above hypothesis, we show that the $\mathbb{F}_p$-cohomology algebra of $G_{\mathbb{K}}$ is the quadratic dual of the graded algebra ${\rm gr}_\bullet\mathbb{F}_p[G_{\mathbb{K}}]$, induced by the powers of the augmentation ideal of the group algebra $\mathbb{F}_p[G_{\mathbb{K}}]$, and these two algebras decompose as products of elementary quadratic algebras. Finally, we propose a refinement of the Koszulity conjectures, analogous to I. Efrat’s elementary type conjecture.