dglap evolution
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Colin Egerer ◽  
Robert G. Edwards ◽  
Christos Kallidonis ◽  
Kostas Orginos ◽  
Anatoly V. Radyushkin ◽  
...  

Abstract We apply the Distillation spatial smearing program to the extraction of the unpolarized isovector valence PDF of the nucleon. The improved volume sampling and control of excited-states afforded by distillation leads to a dramatically improved determination of the requisite Ioffe-time Pseudo-distribution (pITD). The impact of higher-twist effects is subsequently explored by extending the Wilson line length present in our non-local operators to one half the spatial extent of the lattice ensemble considered. The valence PDF is extracted by analyzing both the matched Ioffe-time Distribution (ITD), as well as a direct matching of the pITD to the PDF. Through development of a novel prescription to obtain the PDF from the pITD, we establish a concerning deviation of the pITD from the expected DGLAP evolution of the pseudo-PDF. The presence of DGLAP evolution is observed once more following introduction of a discretization term into the PDF extractions. Observance and correction of this discrepancy further highlights the utility of distillation in such structure studies.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Edmond Iancu ◽  
Yair Mulian

Abstract Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the “real” next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in [1]. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO corrections to inclusive dijet production are then obtained by integrating out the kinematics of any of the three final partons. We explicitly work out the interesting limits where the unmeasured parton is either a soft gluon, or the product of a collinear splitting. We find the expected results in both limits: the B-JIMWLK evolution of the leading-order dijet cross-section in the first case (soft gluon) and, respectively, the DGLAP evolution of the initial and final states in the second case (collinear splitting). The “virtual” NLO corrections to dijet production will be presented in a subsequent publication.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Miguel G. Echevarria ◽  
Zhong-Bo Kang ◽  
John Terry

Abstract We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from W/Z boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of W/Z bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of W/Z vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
L. A. Harland-Lang ◽  
A. D. Martin ◽  
R. Nathvani ◽  
R. S. Thorne

Abstract We present the MMHT2015qed PDF set, resulting from the inclusion of QED corrections to the existing set of MMHT Parton Distribution Functions (PDFs), and which contain the photon PDF of the proton. Adopting an input distribution from the LUXqed formulation, we discuss our methods of including QED effects for the full, coupled DGLAP evolution of all partons with QED at $${\mathcal {O}}(\alpha )$$O(α), $${\mathcal {O}}(\alpha \alpha _{S})$$O(ααS), $${\mathcal {O}}(\alpha ^2)$$O(α2). While we find consistency for the photon PDF of the proton with other recent sets, building on this we also present a set of QED corrected neutron PDFs and provide the photon PDF separated into its elastic and inelastic contributions. The effect of QED corrections on the other partons and the fit quality is investigated, and the sources of uncertainty for the photon are outlined. Finally we explore the phenomenological implications of this set, giving the partonic luminosities for both the elastic and inelastic contributions to the photon and the effect of our photon PDF on fits to high mass Drell–Yan production, including the photon-initiated channel.


2019 ◽  
Vol 79 (1) ◽  
Author(s):  
M. R. Pelicer ◽  
E. G. de Oliveira ◽  
A. D. Martin ◽  
M. G. Ryskin

2018 ◽  
Vol 27 (12) ◽  
pp. 1840006
Author(s):  
Jamal Jalilian-Marian

Ultra-high energy neutrinos are an enigma; among their many poorly understood aspects are their origins and how they interact with nucleons when they reach the Earth. Due to the hard scale ([Formula: see text]) involved in neutrino-nucleon scattering and for a large range of neutrino energies, it is appropriate to describe the target nucleon in terms of its partons — quarks and gluons — and their evolution with [Formula: see text] as governed by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations of perturbative Quantum ChromoDynamics (pQCD). Nevertheless, at the highest neutrino energies, the scattering cross-section is dominated by the contribution of small [Formula: see text] gluons of the target where one expects DGLAP evolution equations to break down due to high gluon density effects (gluon saturation). Here, we give a brief overview of gluon saturation physics in QCD and its effects on ultra-high energy neutrino-nucleon (nucleus) scattering cross-section.


2018 ◽  
Vol 78 (9) ◽  
Author(s):  
Carlos Contreras ◽  
Eugene Levin ◽  
Rodrigo Meneses ◽  
Irina Potashnikova
Keyword(s):  

2018 ◽  
Vol 191 ◽  
pp. 04006
Author(s):  
Anatoly Kotikov

We show the new relationship [1] between the anomalous dimensions, resummed through next-to-next-to-leading-logarithmic order, in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations for the first Mellin moments Dq,g(μ2) of the quark and gluon fragmentation functions, which correspond to the average hadron multiplicities in jets initiated by quarks and gluons, respectively. So far, such relationships have only been known from supersymmetric (SUSY) QCD. Exploiting available next-to-nextto- next-to-leading-order (NNNLO) information on the ratio D+g (μ2)=D+q (μ2) of the dominant plus components, the fit of the world data of Dq,g(μ2) for charged hadrons measured in e+e- annihilation leads to α(5)s (MZ) = 0:1205 +0:0016 -0:0020.


Sign in / Sign up

Export Citation Format

Share Document