bias voltage
Recently Published Documents


TOTAL DOCUMENTS

1590
(FIVE YEARS 257)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 253 ◽  
pp. 115178
Author(s):  
Xiaozhen Du ◽  
Lixiang Du ◽  
Xing Cai ◽  
Zhenfu Hao ◽  
Xiangdong Xie ◽  
...  

2022 ◽  
Vol 26 (1) ◽  
pp. 1-12
Author(s):  
Pitchayapatchaya Srikram ◽  
Masayuki Ikebe ◽  
Masato Motomura

Author(s):  
П.Н. Аруев ◽  
В.П. Белик ◽  
А.А. Блохин ◽  
В.В. Забродский ◽  
А.В. Николаев ◽  
...  

Avalanche silicon photodiode have been developted for near ir, visible, UV and VUV light range. External quantum efficiency have been studied in 114 - 170 abd 210 - 1100nm range. It is demonstrated that photodiode reach from 29 to 9300 electrons/photon on 160 nm with bias voltage of 190 and 303 v respectively.


2022 ◽  
Vol 64 (2) ◽  
pp. 284
Author(s):  
A.С. Джумалиев ◽  
В.К. Сахаров

The results of study of bias voltage Ub and substrate temperature Ts influence on the texture of FeCo films with the thickness of 180 nm deposited on Si/SiO2 substrates by DC magnetron sputtering are presented. It is shown that the change of Ub from -250 V to ~ 80 V leads to the growth of films with (110) texture. Further change of Ub from 80 V to 250 V causes the growth of films having (200) texture. Films deposited at Ub = 0 and Ts = 60º – 300º C have (200) texture. Further increase of Ts results in the change of film texture to (110).


Author(s):  
Zhipeng Wu ◽  
Wenjuan Liu ◽  
Zhihao Tong ◽  
Yao Cai ◽  
Chengliang Sun ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Qi Wang ◽  
Shuhua Cao ◽  
Xufeng Gao ◽  
Xinrui Chen ◽  
Dawei Zhang

A theoretical study was conducted with the aim of improving the detection accuracy of graphene-based surface plasmon resonance (SPR) biosensors. We studied the effect of applying a bias voltage to the sensor surface on its detection accuracy. The optimum thicknesses of silver and gold layers in the biosensor of 47 nm and 3 nm, respectively, were determined. Graphene layers deposited on these thin silver and gold films formed a sensor surface system, on which the surface plasmons were excited. The real and imaginary parts of the refractive index of graphene were controlled by the bias voltage. When the chemical potential was increased from 36 meV to 8 eV, the detection accuracy of the sensor was correspondingly increased by 213%.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Shubham Shubham ◽  
Yoonho Seo ◽  
Vahid Naderyan ◽  
Xin Song ◽  
Anthony J. Frank Frank ◽  
...  

Audio applications such as mobile phones, hearing aids, true wireless stereo earphones, and Internet of Things devices demand small size, high performance, and reduced cost. Microelectromechanical system (MEMS) capacitive microphones fulfill these requirements with improved reliability and specifications related to sensitivity, signal-to-noise ratio (SNR), distortion, and dynamic range when compared to their electret condenser microphone counterparts. We present the design and modeling of a semiconstrained polysilicon diaphragm with flexible springs that are simply supported under bias voltage with a center and eight peripheral protrusions extending from the backplate. The flexible springs attached to the diaphragm reduce the residual film stress effect more effectively compared to constrained diaphragms. The center and peripheral protrusions from the backplate further increase the effective area, linearity, and sensitivity of the diaphragm when the diaphragm engages with these protrusions under an applied bias voltage. Finite element modeling approaches have been implemented to estimate deflection, compliance, and resonance. We report an 85% increase in the effective area of the diaphragm in this configuration with respect to a constrained diaphragm and a 48% increase with respect to a simply supported diaphragm without the center protrusion. Under the applied bias, the effective area further increases by an additional 15% as compared to the unbiased diaphragm effective area. A lumped element model has been also developed to predict the mechanical and electrical behavior of the microphone. With an applied bias, the microphone has a sensitivity of −38 dB (ref. 1 V/Pa at 1 kHz) and an SNR of 67 dBA measured in a 3.25 mm ´ 1.9 mm ´ 0.9 mm package including an analog ASIC.


Author(s):  
Muhammad Hafiz bin Abu Bakar ◽  
Aboulaye Traore ◽  
Junjie Guo ◽  
Toshiharu MAKINO ◽  
Masahiko Ogura ◽  
...  

Abstract Diamond solid-state devices are very attractive to electrically control the charge state of Nitrogen-Vacancy (NV) centers. In this work, Vertical p-type Diamond Schottky Diode (VDSDs) is introduced as a platform to electrically control the interconversion between the neutral charge NV (NV0) and negatively charged NV (NV-) centers. The photoluminescence (PL) of NV centers generated by ion-implantation in VDSDs shows the increase of NV- Zero Phonon Line (ZPL) and phonon sideband (PBS) intensities with the reverse voltage, whereas the NV0 ZPL intensity decreases. Thus, NV centers embedded into VDSDs are converted into NV- under reverse bias voltage. Moreover, the optically detected magnetic resonance (ODMR) of NV- exhibits an increase in the ODMR contrast with the reverse bias voltage and splitting of the resonance dips. Since no magnetic is applied, such a dip splitting in ODMR spectrum is ascribed the Stark effect induced by the interaction of NV- with the electric field existing within the depletion region of VDSDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingxin Guo ◽  
Qian Chen ◽  
Jianxun Su ◽  
Zengrui Li

In this study, a frequency-selective rasorber with a tunable passband and two absorptive bands is presented. It is designed using two active FSSs, an absorptive FSS realized with tripole elements, and a lossless bandpass FSS achieved with ring slots. Both active FSSs embedded with varactors realize the shift of transmission frequency bands by controlling the bias voltage of the feed network. The working principle is briefly investigated according to an equivalent circuit model. A prototype is fabricated and measured to verify the simulated results, which show that a passband is tuned from 3 to 4.78 GHz between two absorptive bands, and the maximum band of |S11| < −10 dB covers from 2.2 to 7.96 GHz.


Sign in / Sign up

Export Citation Format

Share Document