palladium catalysts
Recently Published Documents


TOTAL DOCUMENTS

1607
(FIVE YEARS 190)

H-INDEX

96
(FIVE YEARS 10)

Author(s):  
Sujin Guo ◽  
Hao Li ◽  
Kimberly N. Heck ◽  
Xinying Luan ◽  
Wenhua Guo ◽  
...  

Nature ◽  
2021 ◽  
Vol 600 (7889) ◽  
pp. 444-449
Author(s):  
Da Zhao ◽  
Roland Petzold ◽  
Jiyao Yan ◽  
Dieter Muri ◽  
Tobias Ritter

AbstractTritium labelling is a critical tool for investigating the pharmacokinetic and pharmacodynamic properties of drugs, autoradiography, receptor binding and receptor occupancy studies1. Tritium gas is the preferred source of tritium for the preparation of labelled molecules because it is available in high isotopic purity2. The introduction of tritium labels from tritium gas is commonly achieved by heterogeneous transition-metal-catalysed tritiation of aryl (pseudo)halides. However, heterogeneous catalysts such as palladium supported on carbon operate through a reaction mechanism that also results in the reduction of other functional groups that are prominently featured in pharmaceuticals3. Homogeneous palladium catalysts can react chemoselectively with aryl (pseudo)halides but have not been used for hydrogenolysis reactions because, after required oxidative addition, they cannot split dihydrogen4. Here we report a homogenous hydrogenolysis reaction with a well defined, molecular palladium catalyst. We show how the thianthrene leaving group—which can be introduced selectively into pharmaceuticals by late-stage C–H functionalization5—differs in its coordinating ability to relevant palladium(II) catalysts from conventional leaving groups to enable the previously unrealized catalysis with dihydrogen. This distinct reactivity combined with the chemoselectivity of a well defined molecular palladium catalyst enables the tritiation of small-molecule pharmaceuticals that contain functionality that may otherwise not be tolerated by heterogeneous catalysts. The tritiation reaction does not require an inert atmosphere or dry conditions and is therefore practical and robust to execute, and could have an immediate impact in the discovery and development of pharmaceuticals.


2021 ◽  
Vol 5-6 (449) ◽  
pp. 14-21
Author(s):  
A.I. Jumekeyeva ◽  
S.N. Akhmetova ◽  
F.U. Bukharbayeva ◽  
T.A. Aubakirov ◽  
KH.N. Zhanbekov
Keyword(s):  

2021 ◽  
Vol 2086 (1) ◽  
pp. 012203
Author(s):  
P D Pushankina ◽  
I S Lutsenko ◽  
I S Glazkova ◽  
T I Malkov ◽  
M A Mukhanov

Abstract A new method for the highly active palladium catalyst synthesis on the surface of a Pd-23%Ag film has been developed to increase the material activity with respect to reactions involving hydrogen. Comparison of the electrochemical experiments data of classical palladium black and a new developed nanocatalyst demonstrated a significant increase in catalytic activity in the methanol oxidation reaction (up to 17.09 μA cm−2) for electrodes modified with the latter catalyst. The reason for that is an increase in the number of localized potentially more active surface regions due to the creation of a larger number of active sites in comparison with spherical particles. Estimation of resistance to CO poisoning showed high efficiency of nanocatalysts. Chronoamperometric experiment established the long-term stability and activity of the developed catalyst and confirmed the possibility of its practical use.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1446
Author(s):  
Andrey A. Saraev ◽  
Svetlana A. Yashnik ◽  
Evgeny Yu. Gerasimov ◽  
Anna M. Kremneva ◽  
Zakhar S. Vinokurov ◽  
...  

In this study, 3%Pd/Al2O3, 3%Pt/Al2O3 and bimetallic (1%Pd + 2%Pt)/Al2O3 catalysts were examined in the total oxidation of methane in a temperature range of 150–400 °C. The evolution of the active component under the reaction conditions was studied by transmission electron microscopy and in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. It was found that the platinum and bimetallic palladium-platinum catalysts are more stable against sintering than the palladium catalysts. For all the catalysts, the active component forms a “core-shell” structure in which the metallic core is covered by an oxide shell. The “core-shell” structure for the platinum and bimetallic palladium-platinum catalysts is stable in the temperature range of 150–400 °C. However, in the case of the palladium catalysts the metallic core undergoes the reversible oxidation at temperatures above 300 °C and reduced to the metallic state with the decrease in the reaction temperature. The scheme of the active component evolution during the oxidation of methane is proposed and discussed.


2021 ◽  
Vol 897 (1) ◽  
pp. 012012
Author(s):  
I Malina ◽  
K Malins ◽  
M Strods-Vavilovs ◽  
V Uleiskis

Abstract The effect of SiO2-Al2O3 (Pd5%/SA), activated carbon (Pd5%/C) and Al2O3 (Pd5%/A) supported palladium (5%) catalysts on renewable hydrocarbon synthesis via rapeseed oil hydrotreatment was investigated. The hydrotreatment experiments were carried out in solvent free medium under initial H2 pressure 100 bar and at 340 °C temperature for 120 min using catalyst amount 5%. Gas chromatography-mass spectrometry (GC/MS) analysis were used for estimation of hydrocarbon content in the obtained samples. Pd5%/SA catalyst provided complete conversion of rapeseed oil into marketable liquid renewable hydrocarbons without presence of oxygen containing substances under studied hydrotreatment conditions. Moreover, all tested Pd catalysts gave narrow range of linear saturated hydrocarbons (n-C15-C19). Pd5%/C and Pd5%/A catalysts gave partial feedstock conversion into hydrocarbons even in long residence time. Overall liquid hydrocarbon yields were from 55.3% to 82.3%.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1311
Author(s):  
Dolorès Bourbiaux ◽  
Yu Xu ◽  
Laurence Burel ◽  
Firat Goc ◽  
Pascal Fongarland ◽  
...  

Lignin is one of the main components of lignocellulosic biomass and corresponds to the first renewable source of aromatic compounds. It is obtained as a by-product in 100 million tons per year, mainly from the paper industry, from which only 2–3% is upgraded for chemistry purposes, with the rest being used as an energy source. The richness of the functional groups in lignin makes it an attractive precursor for a wide variety of aromatic compounds. With this aim, we investigated the Pd-catalyzed depolymerization of lignin under mild oxidizing conditions (air, 150 °C, and aqueous NaOH) producing oxygenated aromatic compounds, such as vanillin, vanillic acid, and acetovanillone. Palladium catalysts were implemented following different strategies, involving nanoparticles stabilized in water, and nanoparticles were supported on TiO2. Significant conversion of lignin was observed in all cases; however, depending on the catalyst nature and the synthetic methods, differences were observed in terms of selectivity in aromatic monomers, mainly vanillin. All these aspects are discussed in detail in this report, which also provides new insights into the role that Pd-catalysts can play for the lignin depolymerization mechanism.


Sign in / Sign up

Export Citation Format

Share Document