brittle solids
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 52)

H-INDEX

56
(FIVE YEARS 4)

Author(s):  
Bin Jiang ◽  
Jiayi Hu ◽  
Yazhou Guo ◽  
Jian Li ◽  
Yi Ding ◽  
...  

2021 ◽  
Vol 140 ◽  
pp. 104284
Author(s):  
Lars Blatny ◽  
Henning Löwe ◽  
Stephanie Wang ◽  
Johan Gaume

Author(s):  
Wei Sun ◽  
Wenjun Lu ◽  
Feiyang Bao ◽  
Pengpeng Ni

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Kooij ◽  
Gerard van Dalen ◽  
Jean-François Molinari ◽  
Daniel Bonn

AbstractAnyone who has ever broken a dish or a glass knows that the resulting fragments range from roughly the size of the object all the way down to indiscernibly small pieces: typical fragment size distributions of broken brittle materials follow a power law, and therefore lack a characteristic length scale. The origin of this power-law behavior is still unclear, especially why it is such an universal feature. Here we study the explosive fragmentation of glass Prince Rupert’s drops, and uncover a fundamentally different breakup mechanism. The Prince Rupert’s drops explode due to their large internal stresses resulting in an exponential fragment size distribution with a well-defined fragment size. We demonstrate that generically two distinct breakup processes exist, random and hierarchical, that allows us to fully explain why fragment size distributions are power-law in most cases but exponential in others. We show experimentally that one can even break the same material in different ways to obtain either random or hierarchical breakup, giving exponential and power-law distributed fragment sizes respectively. That a random breakup process leads to well-defined fragment sizes is surprising and is potentially useful to control fragmentation of brittle solids.


Author(s):  
Mathias Lebihain ◽  
Laurent Ponson ◽  
Djimédo Kondo ◽  
Jean-Baptiste Leblond
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document