biomedical text
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 86)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
pp. 682-693
Author(s):  
Eslam Amer

In this article, a new approach is introduced that makes use of the valuable information that can be extracted from a patient's electronic healthcare records (EHRs). The approach employs natural language processing and biomedical text mining to handle patient's data. The developed approach extracts relevant medical entities and builds relations between symptoms and other clinical signature modifiers. The extracted features are viewed as evaluation features. The approach utilizes such evaluation features to decide whether an applicant could gain disability benefits or not. Evaluations showed that the proposed approach accurately extracts symptoms and other laboratory marks with high F-measures (93.5-95.6%). Also, results showed an excellent deduction in assessments to approve or reject an applicant case to obtain a disability benefit.


Author(s):  
Maliha Rashida ◽  
Fariha Iffath ◽  
Rezaul Karim ◽  
Mohammad Shamsul Arefin

Author(s):  
Ling Wang ◽  
Minglei Shan ◽  
Tong Li ◽  
Yingxuan Tang ◽  
Tiehua Zhou

2021 ◽  
Author(s):  
Vatsala Pokhrel ◽  
Bhusan K. Kuntal ◽  
Divyanshu Srivastava ◽  
Sharmila S. Mande ◽  
Krishanu Das Baksi

2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ying Xiong ◽  
Shuai Chen ◽  
Buzhou Tang ◽  
Qingcai Chen ◽  
Xiaolong Wang ◽  
...  

Abstract Background Biomedical named entity recognition (NER) is a fundamental task of biomedical text mining that finds the boundaries of entity mentions in biomedical text and determines their entity type. To accelerate the development of biomedical NER techniques in Spanish, the PharmaCoNER organizers launched a competition to recognize pharmacological substances, compounds, and proteins. Biomedical NER is usually recognized as a sequence labeling task, and almost all state-of-the-art sequence labeling methods ignore the meaning of different entity types. In this paper, we investigate some methods to introduce the meaning of entity types in deep learning methods for biomedical NER and apply them to the PharmaCoNER 2019 challenge. The meaning of each entity type is represented by its definition information. Material and method We investigate how to use entity definition information in the following two methods: (1) SQuad-style machine reading comprehension (MRC) methods that treat entity definition information as query and biomedical text as context and predict answer spans as entities. (2) Span-level one-pass (SOne) methods that predict entity spans of one type by one type and introduce entity type meaning, which is represented by entity definition information. All models are trained and tested on the PharmaCoNER 2019 corpus, and their performance is evaluated by strict micro-average precision, recall, and F1-score. Results Entity definition information brings improvements to both SQuad-style MRC and SOne methods by about 0.003 in micro-averaged F1-score. The SQuad-style MRC model using entity definition information as query achieves the best performance with a micro-averaged precision of 0.9225, a recall of 0.9050, and an F1-score of 0.9137, respectively. It outperforms the best model of the PharmaCoNER 2019 challenge by 0.0032 in F1-score. Compared with the state-of-the-art model without using manually-crafted features, our model obtains a 1% improvement in F1-score, which is significant. These results indicate that entity definition information is useful for deep learning methods on biomedical NER. Conclusion Our entity definition information enhanced models achieve the state-of-the-art micro-average F1 score of 0.9137, which implies that entity definition information has a positive impact on biomedical NER detection. In the future, we will explore more entity definition information from knowledge graph.


2021 ◽  
Vol 11 (20) ◽  
pp. 9648
Author(s):  
Alexandros Kanterakis ◽  
Nikos Kanakaris ◽  
Manos Koutoulakis ◽  
Konstantina Pitianou ◽  
Nikos Karacapilidis ◽  
...  

Today, there are excellent resources for the semantic annotation of biomedical text. These resources span from ontologies, tools for NLP, annotators, and web services. Most of these are available either in the form of open source components (i.e., MetaMap) or as web services that offer free access (i.e., Whatizit). In order to use these resources in automatic text annotation pipelines, researchers face significant technical challenges. For open-source tools, the challenges include the setting up of the computational environment, the resolution of dependencies, as well as the compilation and installation of the software. For web services, the challenge is implementing clients to undertake communication with the respective web APIs. Even resources that are available as Docker containers (i.e., NCBO annotator) require significant technical skills for installation and setup. This work deals with the task of creating ready-to-install and run Research Objects (ROs) for a large collection of components in biomedical text analysis. These components include (a) tools such as cTAKES, NOBLE Coder, MetaMap, NCBO annotator, BeCAS, and Neji; (b) ontologies from BioPortal, NCBI BioSystems, and Open Biomedical Ontologies; and (c) text corpora such as BC4GO, Mantra Gold Standard Corpus, and the COVID-19 Open Research Dataset. We make these resources available in OpenBio.eu, an open-science RO repository and workflow management system. All ROs can be searched, shared, edited, downloaded, commented on, and rated. We also demonstrate how one can easily connect these ROs to form a large variety of text annotation pipelines.


2021 ◽  
Author(s):  
Helena Balabin ◽  
Charles Tapley Hoyt ◽  
Colin Birkenbihl ◽  
Benjamin M. Gyori ◽  
John A. Bachman ◽  
...  

The majority of biomedical knowledge is stored in structured databases or as unstructured text in scientific publications. This vast amount of information has led to numerous machine learning-based biological applications using either text through natural language processing (NLP) or structured data through knowledge graph embedding models (KGEMs). However, representations based on a single modality are inherently limited. To generate better representations of biological knowledge, we propose STonKGs, a Sophisticated Transformer trained on biomedical text and Knowledge Graphs. This multimodal Transformer uses combined input sequences of structured information from KGs and unstructured text data from biomedical literature to learn joint representations. First, we pre-trained STonKGs on a knowledge base assembled by the Integrated Network and Dynamical Reasoning Assembler (INDRA) consisting of millions of text-triple pairs extracted from biomedical literature by multiple NLP systems. Then, we benchmarked STonKGs against two baseline models trained on either one of the modalities (i.e., text or KG) across eight different classification tasks, each corresponding to a different biological application. Our results demonstrate that STonKGs outperforms both baselines, especially on the more challenging tasks with respect to the number of classes, improving upon the F1-score of the best baseline by up to 0.083. Additionally, our pre-trained model as well as the model architecture can be adapted to various other transfer learning applications. Finally, the source code and pre-trained STonKGs models are available at https://github.com/stonkgs/stonkgs and https://huggingface.co/stonkgs/stonkgs-150k.


2021 ◽  
Vol 11 (4) ◽  
pp. 267-273
Author(s):  
Wen-Juan Hou ◽  
◽  
Bamfa Ceesay

Information extraction (IE) is the process of automatically identifying structured information from unstructured or partially structured text. IE processes can involve several activities, such as named entity recognition, event extraction, relationship discovery, and document classification, with the overall goal of translating text into a more structured form. Information on the changes in the effect of a drug, when taken in combination with a second drug, is known as drug–drug interaction (DDI). DDIs can delay, decrease, or enhance absorption of drugs and thus decrease or increase their efficacy or cause adverse effects. Recent research trends have shown several adaptation of recurrent neural networks (RNNs) from text. In this study, we highlight significant challenges of using RNNs in biomedical text processing and propose automatic extraction of DDIs aiming at overcoming some challenges. Our results show that the system is competitive against other systems for the task of extracting DDIs.


BioChem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 60-80
Author(s):  
Nícia Rosário-Ferreira ◽  
Catarina Marques-Pereira ◽  
Manuel Pires ◽  
Daniel Ramalhão ◽  
Nádia Pereira ◽  
...  

Text mining (TM) is a semi-automatized, multi-step process, able to turn unstructured into structured data. TM relevance has increased upon machine learning (ML) and deep learning (DL) algorithms’ application in its various steps. When applied to biomedical literature, text mining is named biomedical text mining and its specificity lies in both the type of analyzed documents and the language and concepts retrieved. The array of documents that can be used ranges from scientific literature to patents or clinical data, and the biomedical concepts often include, despite not being limited to genes, proteins, drugs, and diseases. This review aims to gather the leading tools for biomedical TM, summarily describing and systematizing them. We also surveyed several resources to compile the most valuable ones for each category.


Sign in / Sign up

Export Citation Format

Share Document