limb loading
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 41)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
pp. 1-1
Author(s):  
Chenhui Dong ◽  
Ying Chen ◽  
Zhixin Li ◽  
Shiyun Lv ◽  
Zhan Huan ◽  
...  

Author(s):  
Krithika Swaminathan ◽  
Sungwoo Park ◽  
Fouzia Raza ◽  
Franchino Porciuncula ◽  
Sangjun Lee ◽  
...  

Abstract Background Ankle-targeting resistance training for improving plantarflexion function during walking increases rehabilitation intensity, an important factor for motor recovery after stroke. However, understanding of the effects of resisting plantarflexion during stance on joint kinetics and muscle activity—key outcomes in evaluating its potential value in rehabilitation—remains limited. This initial study uses a unilateral exosuit that resists plantarflexion during mid-late stance in unimpaired individuals to test the hypotheses that when plantarflexion is resisted, individuals would (1) increase plantarflexor ankle torque and muscle activity locally at the resisted ipsilateral ankle, but (2) at higher forces, exhibit a generalized response that also uses the unresisted joints and limb. Further, we expected (3) short-term retention into gait immediately after removal of resistance. Methods Ten healthy young adults walked at 1.25 m s−1 for four 10-min discrete bouts, each comprising baseline, exposure to active exosuit-applied resistance, and post-active sections. In each bout, a different force magnitude was applied based on individual baseline ankle torques. The peak resistance torque applied by the exosuit was 0.13 ± 0.01, 0.19 ± 0.01, 0.26 ± 0.02, and 0.32 ± 0.02 N m kg−1, in the LOW, MED, HIGH, and MAX bouts, respectively. Results (1) Across all bouts, participants increased peak ipsilateral biological ankle torque by 0.13–0.25 N m kg−1 (p < 0.001) during exosuit-applied resistance compared to corresponding baselines. Additionally, ipsilateral soleus activity during stance increased by 5.4–11.3% (p < 0.05) in all but the LOW bout. (2) In the HIGH and MAX bouts, vertical ground reaction force decreased on the ipsilateral limb while increasing on the contralateral limb (p < 0.01). Secondary analysis found that the force magnitude that maximized increases in biological ankle torque without significant changes in limb loading varied by subject. (3) Finally, peak ipsilateral plantarflexion angle increased significantly during post-exposure in the intermediate HIGH resistance bout (p < 0.05), which corresponded to the greatest average increase in soleus activity (p > 0.10). Conclusions Targeted resistance of ankle plantarflexion during stance by an exosuit consistently increased local ipsilateral plantarflexor effort during active resistance, but force magnitude will be an important parameter to tune for minimizing the involvement of the unresisted joints and limb during training.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0243669
Author(s):  
Michal Struška ◽  
Martin Hora ◽  
Thomas R. Rocek ◽  
Vladimír Sládek

Experimental grinding has been used to study the relationship between human humeral robusticity and cereal grinding in the early Holocene. However, such replication studies raise two questions regarding the robusticity of the results: whether female nonathletes used in previous research are sufficiently comparable to early agricultural females, and whether previous analysis of muscle activation of only four upper limb muscles is sufficient to capture the stress of cereal grinding on upper limb bones. We test the influence of both of these factors. Electromyographic activity of eight upper limb muscles was recorded during cereal grinding in an athletic sample of 10 female rowers and in 25 female nonathletes and analyzed using both an eight- and four-muscle model. Athletes had lower activation than nonathletes in the majority of measured muscles, but except for posterior deltoid these differences were non-significant. Furthermore, both athletes and nonathletes had lower muscle activation during saddle quern grinding than rotary quern grinding suggesting that the nonathletes can be used to model early agricultural females during saddle and rotary quern grinding. Similarly, in both eight- and four-muscle models, upper limb loading was lower during saddle quern grinding than during rotary quern grinding, suggesting that the upper limb muscles may be reduced to the previously used four-muscle model for evaluation of the upper limb loading during cereal grinding. Another implication of our measurements is to question the assumption that skeletal indicators of high involvement of the biceps brachii muscle can be interpreted as specifically indicative of saddle quern grinding.


2021 ◽  
Vol 79 (1) ◽  
pp. 101-110
Author(s):  
Krzysztof Ficek ◽  
Natalia Kędra ◽  
Radosław Skowronek ◽  
Kamila Kluczniok ◽  
Magdalena Strózik ◽  
...  

Abstract The 5th metatarsal fracture is a common foot fracture which could exclude a player from competition for several months and significantly affect his or her career. This manuscript presents the treatment and rehabilitation of professional soccer players who had acute fractures of the 5th metatarsal bone and a cannulated screw fixation. The main purpose of the analysis was to determine the minimum time necessary for a permanent return to the sport after a 5th metatarsal fracture among professional soccer players. We followed the surgical and rehabilitation path of 21 professional soccer players from the Polish League (Ist and IInd divisions) who suffered from the 5th metatarsal bone fracture. All players underwent standard percutaneous internal fixation with the use of cannulated screws. The total inability to play lasted for 9.2 (± 1.86) weeks among players treated only surgically (n = 10), 17.5 (± 2.5) weeks in the conservative and later surgery group, excluding players with nonunion (n = 6), and 24.5 (± 10.5) weeks for nonunion and switch treatment (n = 4) players. Prompt fracture stabilization surgery is recommended for athletes, enabling the implementation of an aggressive rehabilitation protocol as soon as possible. Early limb loading after surgery (from week 2) does not delay fracture healing or hinder the bone union, thus rehabilitation plays a crucial role in shortening the time of RTP (return to play) and is obligatory for each athlete who undergoes surgical treatment.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xia Wang ◽  
Thomas A Perry ◽  
Jimmy Caroupapoullé ◽  
Alexander Forrester ◽  
Nigel K Arden ◽  
...  

Abstract Background Physical activity (PA) is important to general health and knee osteoarthritis (OA). Excessive workplace PA is an established risk factor for knee OA however, appropriate methods of measurement are unclear. There is a need to examine and assess the utility of new methods of measuring workplace PA and estimating knee load prior to application to large-scale, knee OA cohorts. Our aims, therefore, were to monitor workplace PA and estimate lower-limb loading across different occupations in health participants. Methods Twenty-four healthy adults, currently working full-time in a single occupation (≥ 35 h/week) and free of musculoskeletal disease, comorbidity and had no history of lower-limb injury/surgery (past 12-months) were recruited across New South Wales (Australia). A convenience sample was recruited with occupations assigned to levels of workload; sedentary, light manual and heavy manual. Metrics of workplace PA including tasks performed (i.e., sitting), step-count and lower-limb loading were monitored over 10 working days using a daily survey, smartwatch, and a smartphone. Results Participants of light manual occupations had the greatest between-person variations in mean lower-limb load (from 2 to 59 kg*m/s3). Lower-limb load for most participants of the light manual group was similar to a single participant in heavy manual work (30 kg*m/s3) and was at least three times greater than the sedentary group (2 kg*m/s3). The trends of workplace PA over working hours were largely consistent, per individual, but rare events of extreme loads were observed across all participants (up to 760 kg*m/s3). Conclusions There are large interpersonal variations in metrics of workplace PA, particularly among light and heavy manual occupations. Our estimates of lower-limb loading were largely consistent with pre-conceived levels of physical demand. We present a new approach to monitoring PA and estimating lower-limb loading, which could be applied to future occupational studies of knee OA.


2021 ◽  
Vol 3 ◽  
Author(s):  
Masahiro Fujimoto ◽  
Eri Uchida ◽  
Akinori Nagano ◽  
Mark W. Rogers ◽  
Tadao Isaka

Lower-limb weight-bearing load distribution in stationary standing influences the timing of rapid first step initiation of importance for functional movement activities and agility performance in sports. This study investigated the effect of pre-step lower-limb loading and unloading with preparatory knee flexion-extension movements on sidestepping performance in fifteen male collegiate basketball players. Participants performed two-choice (step limb) reaction time sidestepping under two conditions: without preparatory movements before the go cue (no-prep–NP) and with continuous alternating knee extension and flexion movements (prep–P). The reaction signal was provided at the beginning of knee extension and flexion and during these movements which corresponded with the largest and smallest loading instants and the transition states between those instants. Sidestepping performance was assessed with three-dimensional kinematic data and ground reaction forces. Step initiation onset time was significantly faster by 13–15% than the NP condition when initiated in the knee flexion phase (p ≤ 0.028, r ≥ 0.70), whereas step-limb unloading interval from step initiation to step lift-off was significantly faster by 12–15% in the knee extension phase (p ≤ 0.01, r ≥ 0.74). The preparatory movements significantly shortened step lift-off by 10–12% (p ≤ 0.013, r ≥ 0.73) and step duration by 17–21% (p &lt; 0.001, r ≥ 0.85) with 19–22% faster step velocity (p &lt; 0.001, r ≥ 0.84), which resulted in 14–15% shorter overall time to step landing (p &lt; 0.001, r ≥ 0.84), irrespective of the loading phases. These results indicated that lower-limb loading with pre-step knee flexion facilitated faster step initiation, while lower-limb unloading with knee extension facilitated faster step-limb unloading, both resulting in faster step lift-off. Bilateral knee flexion-extension movements as a preparatory action could be utilized by invasion sports players to facilitate reactive stepping performance for more effective movement initiation.


2021 ◽  
Vol 29 ◽  
pp. S179
Author(s):  
T.A. Perry ◽  
X. Wang ◽  
J. Caroupapoullé ◽  
A. Forrester ◽  
N. Arden ◽  
...  

Author(s):  
Corinna Gebehart ◽  
Joachim Schmidt ◽  
Ansgar Büschges

In legged animals integration of information from various proprioceptors in and on the appendages by local premotor networks in the central nervous system is crucial for controlling motor output. To ensure posture maintenance and precise active movements, information about limb loading and movement is required. In insects, various groups of campaniform sensilla (CS) measure forces and loads acting in different directions on the leg, and the femoral chordotonal organ (fCO) provides information about movement of the femur-tibia (FTi) joint. In this study, we used extra- and intracellular recordings of extensor tibiae (ExtTi) and retractor coxae (RetCx) motor neurons (MNs) and identified local premotor nonspiking interneurons (NSIs), and mechanical stimulation of the fCO and tibial or trochanterofemoral CS (tiCS, tr/fCS), to investigate the premotor network architecture underlying multimodal proprioceptive integration. We found that load feedback from tiCS altered the strength of movement-elicited resistance reflexes and determined the specificity of ExtTi and RetCx MN responses to various load and movement stimuli. These responses were mediated by a common population of identified NSIs into which synaptic inputs from the fCO, tiCS, and tr/fCS are distributed, and whose effects onto ExtTi MNs can be antagonistic for both stimulus modalities. Multimodal sensory signal interaction was found at the level of single NSIs and MNs. The results provide evidence that load and movement feedback are integrated in a multimodal, distributed local premotor network consisting of antagonistic elements controlling movements of the FTi joint, thus substantially extending current knowledge on how legged motor systems achieve fine-tuned motor control.


Sign in / Sign up

Export Citation Format

Share Document