atomic gases
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 48)

H-INDEX

43
(FIVE YEARS 6)

Author(s):  
Ting XIE ◽  
Andrea Orbán ◽  
Xiaodong Xing ◽  
Eliane Luc-Koenig ◽  
Romain Vexiau ◽  
...  

Abstract Ultracold temperatures in dilute quantum gases opened the way to an exquisite control of matter at the quantum level. Here we focus on the control of ultracold atomic collisions using a laser to engineer their interactions at large interatomic distances. We show that the entrance channel of two colliding ultracold atoms can be coupled to a repulsive collisional channel by the laser light so that the overall interaction between the two atoms becomes repulsive: this prevents them to come close together and to undergo inelastic processes, thus protecting the atomic gases from unwanted losses. We illustrate such an optical shielding mechanism with 39K and 133Cs atoms colliding at ultracold temperature (<1 microkelvin). The process is described in the framework of the dressed-state picture and we then solve the resulting stationary coupled Schrödinger equations. The role of spontaneous emission and photoinduced inelastic scattering is also investigated as possible limitations of the shielding efficiency. We predict an almost complete suppression of inelastic collisions over a broad range of Rabi frequencies and detunings from the 39K D2 line of the optical shielding laser, both within the [0, 200 MHz] interval. We found that the polarization of the shielding laser has a minor influence on this efficiency. This proposal could easily be formulated for other bialkali-metal pairs as their long-range interaction are all very similar to each other.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
V. A. Stephanovich ◽  
W. Olchawa

AbstractWe study theoretically the properties of a soliton solution of the fractional Schrödinger equation with quintic nonlinearity. Under “fractional” we understand the Schrödinger equation, where ordinary Laplacian (second spatial derivative in 1D) is substituted by its fractional counterpart with Lévy index $$\alpha$$ α . We speculate that the latter substitution corresponds to phenomenological account for disorder in a system. Using analytical (variational and perturbative) and numerical arguments, we have shown that while in the case of Schrödinger equation with the ordinary Laplacian (corresponding to Lévy index $$\alpha =2$$ α = 2 ), the soliton is unstable, even infinitesimal difference $$\alpha$$ α from 2 immediately stabilizes the soliton texture. Our analytical and numerical investigations of $$\omega (N)$$ ω ( N ) dependence ($$\omega$$ ω is soliton frequency and N its mass) show (within the famous Vakhitov–Kolokolov criterion) the stability of our soliton texture in the fractional $$\alpha <2$$ α < 2 case. Direct numerical analysis of the linear stability problem of soliton texture also confirms this point. We show analytically and numerically that fractional Schrödinger equation with quintic nonlinearity admits the existence of (stable) soliton textures at $$2/3<\alpha <2$$ 2 / 3 < α < 2 , which is in accord with existing literature data. These results may be relevant to both Bose–Einstein condensates in cold atomic gases and optical solitons in the disordered media.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chunyu Jia ◽  
Rukuan Wu ◽  
Ying Hu ◽  
Wu-Ming Liu ◽  
Zhaoxin Liang

Magnetic soliton is an intriguing nonlinear topological excitation that carries magnetic charges while featuring a constant total density. So far, it has only been studied in the ultracold atomic gases with the framework of the equilibrium physics, where its stable existence crucially relies on a nearly spin-isotropic, antiferromagnetic, interaction. Here, we demonstrate that magnetic soliton can appear as the exact solutions of dissipative Gross–Pitaevskii equations in a linearly polarized spinor polariton condensate with the framework of the non-equilibrium physics, even though polariton interactions are strongly spin anisotropic. This is possibly due to a dissipation-enabled mechanism, where spin excitation decouples from other excitation channels as a result of gain-and-loss balance. Such unconventional magnetic soliton transcends constraints of equilibrium counterpart and provides a novel kind of spin-polarized polariton soliton for potential application in opto-spintronics.


2021 ◽  
Author(s):  
V. A. Stephanovich ◽  
W. Olchawa

Abstract We study theoretically the properties of a soliton solution of the fractional Schrödinger equation with quintic nonlinearity. Under ”fractional” we understand the Schrödinger equation, where ordinary Laplacian (second spatial derivative in 1D) is substituted by its fractional counterpart with Lévy index α. We speculate that the latter substitution corresponds to phenomenological account for disorder in a system. Using analytical (variational and perturbative) and numerical arguments, we have shown that while in the case of Schrödinger equation with the ordinary Lapla-cian (corresponding to Lévy index α = 2), the soliton is unstable, even infinitesimal difference α from 2 immediately stabilizes the soliton texture. Our analytical and numerical investigations of ω(N) dependence (ω is soliton frequency and N its mass) show (within the famous Vakhitov-Kolokolov criterion) the stability of our soliton texture in the fractional α < 2 case. Direct numerical analysis of the linear stability problem of soliton texture also confirms this point. We show analytically and numerically that fractional Schrödinger equation with quintic nonlinearity admits the existence of (stable) soliton textures at 2/3 < α < 2, which is in accord with existing literature data. These results may be relevant to both Bose-Einstein condensates in cold atomic gases and optical solitons in the disordered media.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
L. A. Mendoza-López ◽  
J. G. Acosta-Montes ◽  
I. F. Ángeles-Aguillón ◽  
D. Sierra-Costa ◽  
Y. M. Torres ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hui Chen ◽  
Hongkuan Zhang ◽  
Qian Wu ◽  
Yu Huang ◽  
Huy Nguyen ◽  
...  

AbstractModern technological advances allow for the study of systems with additional synthetic dimensions. Higher-order topological insulators in topological states of matters have been pursued in lower physical dimensions by exploiting synthetic dimensions with phase transitions. While synthetic dimensions can be rendered in the photonics and cold atomic gases, little to no work has been succeeded in acoustics because acoustic wave-guides cannot be weakly coupled in a continuous fashion. Here, we formulate the theoretical principles and manufacture acoustic crystals composed of arrays of acoustic cavities strongly coupled through modulated channels to evidence one-dimensional (1D) and two-dimensional (2D) dynamic topological pumpings. In particular, the higher-order topological edge-bulk-edge and corner-bulk-corner transport are physically illustrated in finite-sized acoustic structures. We delineate the generated 2D and four-dimensional (4D) quantum Hall effects by calculating first and second Chern numbers and physically demonstrate robustness against the geometrical imperfections. Synthetic dimensions could provide a powerful way for acoustic topological wave steering and open up a platform to explore any continuous orbit in higher-order topological matter in dimensions four and higher.


Nature ◽  
2021 ◽  
Vol 596 (7871) ◽  
pp. 227-231
Author(s):  
Xiao-Qiong Wang ◽  
Guang-Quan Luo ◽  
Jin-Yu Liu ◽  
W. Vincent Liu ◽  
Andreas Hemmerich ◽  
...  

AbstractTopological superfluidity is an important concept in electronic materials as well as ultracold atomic gases1. However, although progress has been made by hybridizing superconductors with topological substrates, the search for a material—natural or artificial—that intrinsically exhibits topological superfluidity has been ongoing since the discovery of the superfluid 3He-A phase2. Here we report evidence for a globally chiral atomic superfluid, induced by interaction-driven time-reversal symmetry breaking in the second Bloch band of an optical lattice with hexagonal boron nitride geometry. This realizes a long-lived Bose–Einstein condensate of 87Rb atoms beyond present limits to orbitally featureless scenarios in the lowest Bloch band. Time-of-flight and band mapping measurements reveal that the local phases and orbital rotations of atoms are spontaneously ordered into a vortex array, showing evidence of the emergence of global angular momentum across the entire lattice. A phenomenological effective model is used to capture the dynamics of Bogoliubov quasi-particle excitations above the ground state, which are shown to exhibit a topological band structure. The observed bosonic phase is expected to exhibit phenomena that are conceptually distinct from, but related to, the quantum anomalous Hall effect3–7 in electronic condensed matter.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Federico Carlini ◽  
Sandro Stringari
Keyword(s):  

2021 ◽  
Vol 47 (8) ◽  
pp. 700-712
Author(s):  
M. S. Bulakhov ◽  
A. S. Peletminskii ◽  
Yu. V. Slyusarenko

Optik ◽  
2021 ◽  
pp. 167386
Author(s):  
Ke-Wei Wang ◽  
Kai-Yu Huang ◽  
Dong-Jing Li ◽  
Yuan Zhao ◽  
Shi-Sen Ruan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document