aronszajn trees
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2020 ◽  
pp. 1-18
Author(s):  
MIRNA DŽAMONJA ◽  
SAHARON SHELAH
Keyword(s):  

2019 ◽  
Vol 60 (4) ◽  
pp. 587-616
Author(s):  
Heike Mildenberger ◽  
Saharon Shelah
Keyword(s):  
Axiom A ◽  

2019 ◽  
Vol 20 (01) ◽  
pp. 2050003 ◽  
Author(s):  
Mohammad Golshani ◽  
Yair Hayut

Assuming the existence of a proper class of supercompact cardinals, we force a generic extension in which, for every regular cardinal [Formula: see text], there are [Formula: see text]-Aronszajn trees, and all such trees are special.


2019 ◽  
Vol 245 (3) ◽  
pp. 217-291 ◽  
Author(s):  
Ari Meir Brodsky ◽  
Assaf Rinot
Keyword(s):  

2018 ◽  
Vol 83 (04) ◽  
pp. 1512-1538 ◽  
Author(s):  
CHRIS LAMBIE-HANSON ◽  
PHILIPP LÜCKE

AbstractWith the help of various square principles, we obtain results concerning the consistency strength of several statements about trees containing ascent paths, special trees, and strong chain conditions. Building on a result that shows that Todorčević’s principle $\square \left( {\kappa ,\lambda } \right)$ implies an indexed version of $\square \left( {\kappa ,\lambda } \right)$, we show that for all infinite, regular cardinals $\lambda < \kappa$, the principle $\square \left( \kappa \right)$ implies the existence of a κ-Aronszajn tree containing a λ-ascent path. We then provide a complete picture of the consistency strengths of statements relating the interactions of trees with ascent paths and special trees. As a part of this analysis, we construct a model of set theory in which ${\aleph _2}$-Aronszajn trees exist and all such trees contain ${\aleph _0}$-ascent paths. Finally, we use our techniques to show that the assumption that the κ-Knaster property is countably productive and the assumption that every κ-Knaster partial order is κ-stationarily layered both imply the failure of $\square \left( \kappa \right)$.


2018 ◽  
Vol 169 (10) ◽  
pp. 1044-1081
Author(s):  
John Krueger
Keyword(s):  

2018 ◽  
Vol 83 (3) ◽  
pp. 1282-1305 ◽  
Author(s):  
GUNTER FUCHS ◽  
KAETHE MINDEN

AbstractWe investigate properties of trees of height ω1 and their preservation under subcomplete forcing. We show that subcomplete forcing cannot add a new branch to an ω1-tree. We introduce fragments of subcompleteness which are preserved by subcomplete forcing, and use these in order to show that certain strong forms of rigidity of Suslin trees are preserved by subcomplete forcing. Finally, we explore under what circumstances subcomplete forcing preserves Aronszajn trees of height and width ω1. We show that this is the case if CH fails, and if CH holds, then this is the case iff the bounded subcomplete forcing axiom holds. Finally, we explore the relationships between bounded forcing axioms, preservation of Aronszajn trees of height and width ω1 and generic absoluteness of ${\rm{\Sigma }}_1^1$-statements over first order structures of size ω1, also for other canonical classes of forcing.


Sign in / Sign up

Export Citation Format

Share Document