magnetic targeting
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 55)

H-INDEX

37
(FIVE YEARS 6)

2021 ◽  
Vol 2090 (1) ◽  
pp. 012051
Author(s):  
Daniela Garzón ◽  
Luz Helena Camargo ◽  
Diego Julián Rodríguez

Abstract At present, there are different treatments against cancer, however, some of them, such as chemotherapy, are very invasive for the human body, since they affect healthy tissues. Magnetic targeting of drugs by means of magnetic nanoparticles is one of the alternative techniques that has emerged in the last decade, it is based on the targeting of drug delivery to the tumor without affecting healthy tissues, via of injected nanoparticles with diamagnetic properties directly into the bloodstream, driven by external magnetic fields produced by permanent magnets. This technique in literature is often come upon as MTD for its acronym in English. In this work, a numerical model was developed in order to quantify the loss of nanoparticles in the process of interaction with the walls of the bloodstream. For this model, the Kinetic technique was used, quantifying the probability of adsorption and absorption taking into account the following parameters: diameter of the nanoparticle (200 nm), density of the nanoparticle (6450 kg · m -3), diameter of the cell endothelial (0.1 μm - 1 μm), transcellular pores of the fenestrated endothelium (70 nm) and modulus of elasticity of the endothelium (4.1 ± 1.7 kPa).


2021 ◽  
Vol 20 (3) ◽  
pp. 300-304
Author(s):  
Noura Abd El-Latif ◽  
◽  
Mona Denewar ◽  
Rehab R. El-Zehary ◽  
Fatma M. Ibrahim ◽  
...  

Facial palsy can be defined as a kind of paralysis affecting facial muscles. It is termed Bell’s palsy if it is unilateral. It may occur due to trauma to the facial nerve, infections as herpes zoster, neoplastic lesions, or unknown cause. It may be also associated with metabolic and systemic diseases as hypertension, toxicity, amyloidosis, alcoholism, auto-immune diseases and diabetes mellitus. Mesenchymal stem cells (MSCs) are multipotent adult stromal cells that have many benefits as an evolving treatment modality. Bone marrow stem cells (BMSCs) divide progressively in culture, and differentiate into neurons exclusively with use of a simple protocol. Most ongoing preclinical and clinical cell treatment modalities composed of local or systemic transplantation of stem or progenitor cells. In addition, they depend on the migration and retention of transplanted cells at insult areas. Nevertheless, one of the main obstacles against this modality is how to detect the fate and exact location of these cells inside the body, and how to maintain the cells at this specific site. Magnetic targeting systems, which depends on cells labelled by magnetic carriers, have been assessed as a more efficient technique for stem cell delivery to target sites. These systems depend on loading stem cells with magnetic nanoparticles and attracting them to the exact intended area within the body by placing an external magnetic field. Superparamagnetic iron oxide nanoparticles (SPIONs) have been introduced in the last few years as a rising applicant of nanoparticles in a vast variety of medical fields as magnetic separation, drug delivery, magnetic resonance imaging (MRI) and magnetic hyperthermia. In addition, applications of SPIONs, as a site-specific drug carrier, diagnostic agent and stem cell delivery agent, receive most attention of researchers in that field. In this review, up-to-date information about Magnetic targeting of degenerated facial nerve by BMSCs labelled with SPIONs may suggest its capacity of better regeneration than injection of BMSCs alone.


2021 ◽  
Vol Volume 16 ◽  
pp. 6531-6533
Author(s):  
Lian Duan ◽  
Jianlin Zuo ◽  
Fuqiang Zhang ◽  
Binxi Li ◽  
Zhonghang Xu ◽  
...  

2021 ◽  
pp. 0271678X2110288
Author(s):  
Alba Grayston ◽  
Yajie Zhang ◽  
Miguel Garcia-Gabilondo ◽  
Mercedes Arrúe ◽  
Abraham Martin ◽  
...  

The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jie Zhang ◽  
Zheng Liu ◽  
Cunyi Chang ◽  
Ming Hu ◽  
Yang Teng ◽  
...  

PLA-combined ferroferric oxide–graphene oxide–aspirin (Fe3O4-GO-ASA) multifunctional nanobubbles were prepared using the double emulsion-solvent evaporation method. The obtained composite nanobubbles had a regular spherical shape, Zeta potential of (−36.5 ± 10.0) mV, and particle size distribution range of 200–700 nm. The experimental results showed that PLA-combined Fe3O4-GO-ASA nanobubbles could effectively improve the antithrombin parameters of PT, TT, APTT, and INR, and significantly inhibit thrombosis when the composite nanobubbles with a concentration of 80 mg·mL−1 interacted with the rabbit blood. The prepared composite nanobubbles could reach a significant ultrasonic imaging effect and good magnetic targeting under the magnetic field when the nanobubbles' concentration was only 60 mg·mL−1.


2021 ◽  
Vol 215 ◽  
pp. 111329
Author(s):  
Han-Long Cheng ◽  
Hai-Ling Guo ◽  
An-Jian Xie ◽  
Yu-Hua Shen ◽  
Man-Zhou Zhu
Keyword(s):  

2021 ◽  
Vol 18 (175) ◽  
pp. 20200558
Author(s):  
E. F. Yeo ◽  
H. Markides ◽  
A. T. Schade ◽  
A. J. Studd ◽  
J. M. Oliver ◽  
...  

A key challenge for stem cell therapies is the delivery of therapeutic cells to the repair site. Magnetic targeting has been proposed as a platform for defining clinical sites of delivery more effectively. In this paper, we use a combined in vitro experimental and mathematical modelling approach to explore the magnetic targeting of mesenchymal stromal cells (MSCs) labelled with magnetic nanoparticles using an external magnet. This study aims to (i) demonstrate the potential of magnetic tagging for MSC delivery, (ii) examine the effect of red blood cells (RBCs) on MSC capture efficacy and (iii) highlight how mathematical models can provide both insight into mechanics of therapy and predictions about cell targeting in vivo. In vitro MSCs are cultured with magnetic nanoparticles and circulated with RBCs over an external magnet. Cell capture efficacy is measured for varying magnetic field strengths and RBC percentages. We use a 2D continuum mathematical model to represent the flow of magnetically tagged MSCs with RBCs. Numerical simulations demonstrate qualitative agreement with experimental results showing better capture with stronger magnetic fields and lower levels of RBCs. We additionally exploit the mathematical model to make hypotheses about the role of extravasation and identify future in vitro experiments to quantify this effect.


Sign in / Sign up

Export Citation Format

Share Document