schisandra chinensis
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 169)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Vol 47 ◽  
pp. 21-23
Author(s):  
LuQi Liu ◽  
YongCheng Yang ◽  
TeRiGen Bao ◽  
AnHua Wang ◽  
ChunWang Fu ◽  
...  
Keyword(s):  

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Chang Pyo Hong ◽  
Chang-Kug Kim ◽  
Dong Jin Lee ◽  
Hee Jeong Jeong ◽  
Yi Lee ◽  
...  

Abstract Background Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. Results To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. Conclusions Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.


2021 ◽  
pp. 1-9
Author(s):  
Yong-Cheng Yang ◽  
Lu-Qi Liu ◽  
Kun-Jun Wang ◽  
Xue-Qing Zhang ◽  
San-Peng Fan ◽  
...  

Planta Medica ◽  
2021 ◽  
Author(s):  
Dan Su ◽  
Jian Luo ◽  
Junqi Ge ◽  
Yali Liu ◽  
Chen Jin ◽  
...  

Clinical studies have shown that insomnia and anxiety are usually accompanied by cardiovascular dysfunction. In traditional Chinese medicine, Schisandra chinensis (SC) and wine processed Schisandra chinensis (WSC) are mainly used for the treatment of dysphoria, palpitation and insomnia. However, little attention was paid to its mechanism. In this study, we monitored the effect of SC and WSC on the nervous system and cardiovascular system of free-moving rats in the real-time. Our results show that SC and WSC can alleviate cardiovascular dysfunction while promoting sleep, and we further explored their potential mechanisms. HPLC-QTOF-MS was used for the quality control of chemical components in SC and WSC. Data sciences international (DSI) physiological telemetry system was applied to collect the electroencephalogram (EEG), electrocardiogram (ECG) and other parameters of free-moving rats to understand the effects of long-term intake of SC and WSC on rats. The content of Cortisol (CORT), neurotransmitters and amino acids in rat pituitary and hypothalamus were analyzed by UPLC-MS to determine the activity of HPA axis. The expression of melatonin receptor MT1 was analyzed by immunofluorescence technique. Our results suggested that SC and WSC may play the role of promoting sleep by increasing the expression level of melatonin receptor MT1 in hypothalamus, and modulate the activity of HPA axis by regulating the levels of the related neurotransmitters and amino acid, so as to improve the abnormal cardiovascular system of rats. This study may provide theoretical support for explicating the advantages of SC and other phytomedicines in the treatment of insomnia.


Plant Disease ◽  
2021 ◽  
Author(s):  
Baoyu Shen ◽  
Wensong Sun ◽  
Kun Liu ◽  
Jing Tian Zhang

Wuweizi [Schisandra chinensis(Turcz.)Baill.] is used for traditional medicine in northeastern China. In August of 2019, root rot of S. chinensis with an incidence of 30%-50% was observed in a commercial field located in Liaozhong city (41º29’57” N, 122º52’33” E) in the Liaoning province of China. The diseased plants were less vigorous, stunted, and had leaves that turned yellow to brown. Eventually, the whole plant wilted and died. The diseased roots were poorly developed with brown lesion and eventually they would rot. To determine the causal agent, symptomatic roots were collected, small pieces of root with typical lesions were surface sterilized in 2% NaOCl for 3 min, rinsed three times in distilled water, and then plated onto PDA medium. After incubation at 26°C for 5 days, whitish-pink or carmine to rose red colonies on PDA were transferred to carnation leaf agar (CLA). Single spores were isolated with an inoculation needle using a stereomicroscope. Five single conidia isolates obtained from the colonies were incubated at 26°C for 7 days, abundant macroconidia were formed in sporodochia. Macroconidia were falcate, slender, with a distinct curve to the latter half of the apical cell, mostly 3 to 5 septate, measuring 31.3 to 47.8 × 4.8 to 7.5µm (n=50). Microconidia were oval and irregular ovals, 0-1 septate, measuring 5.0 to 17.5 × 2.5 to 17.5µm (n=50). Chlamydospores formed in chains on within or on top of the mycelium. Morphological characteristics of the isolates were in agreement with Fusarium acuminatum (Leslie and Summerell, 2006). To confirm the identity, the partial sequence of the translation elongation factor 1 alpha (TEF1-á) gene of five isolates was amplified using the primers EF-1(ATGGGTAAGGARGACAAG) and EF-2 (GGARGTACCAGTSATCATGTT) (O’Donnell et al. 2015 ) and sequenced. The rDNA internal transcribed spacer (ITS) region for the five isolates was also amplified using the primers ITS1 (TCCGTAGGTGAACCTGCGG) and ITS4 (TCCTCCGCTATTGATATGC) (White et al.1990) and sequenced. The identical sequences were obtained, and one representative sequence of isolate WW31-5 was submitted to GenBank. BLASTn analysis of the TEF-á sequence (MW423624) and ITS sequence (MZ145386), revealed 100%(708/685bp, 563/563bp)sequence identity to F. acuminatum MH595498 and MW560481, respectively. Pathogenicity tests were conducted in greenhouse. Inoculums of F. acuminatum was prepared from the culture of WW31-5 incubated in 2% mung beans juice on a shaker (140 rpm) at 26°C for 5 days. Ten roots of 2-years old plants of S. chinensis were immersed in the conidial suspension (2 × 105 conidia/ml) for 6 hours, and another ten roots immersed in sterilized distilled water in plastic bucket for 6 hours. All these plants were planted into pots with sterilized field soil (two plants per pot). Five pots planted with inoculated plants and another five pots planted with uninoculated plants served as controls. All ten pots were maintained in a greenhouse at 22-26°C for 21 days and irrigated with sterilized water. The leaves of the inoculated plants became yellow,gradually dried up, eventually finally all the aboveground parts died. The roots of the inoculated plants were rotted. Non-inoculated control plants had no symptoms. F. acuminatum was reisolated from the roots of inoculated plants and had morphology identical to the original isolate. The experiment was repeated twice with similar results. F. acuminatum has been reported as a pathogen caused root rot of ginseng (Wang et al. 2016) and not reported on Wuweizi in China. To our knowledge, this is the first report of root rot of S. chinensis caused by F. acuminatum. We have also observed the disease at Benxi city of Liaoning Province in 2020 and it has become an important disease in production of S. chinensis and the effective control method should be adopted to reduce losses.


2021 ◽  
Vol 99 ◽  
pp. 104328
Author(s):  
Yongcheng Yang ◽  
Xueqing Zhang ◽  
Luqi Liu ◽  
Min Chen ◽  
Jingming Jia ◽  
...  

2021 ◽  
Vol 87 ◽  
pp. 104799
Author(s):  
Quanwu Wu ◽  
Chang Liu ◽  
Jianing Zhang ◽  
Wen Xiao ◽  
Fang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document