climate forecast
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 68)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Núria Pérez-Zanón ◽  
Louis-Philippe Caron ◽  
Silvia Terzago ◽  
Bert Van Schaeybroeck ◽  
Llorenç Lledó ◽  
...  

Abstract. Despite the wealth of existing climate forecast data, only a small part is effectively exploited for sectoral applications. A major cause of this is the lack of integrated tools that allow the translation of data into useful and skilful climate information. This barrier is addressed through the development of an R package. CSTools is an easy-to-use toolbox designed and built to assess and improve the quality of climate forecasts for seasonal to multi–annual scales. The package contains process-based state-of-the-art methods for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination and multivariate verification, as well as basic and advanced tools to obtain tailored products. Due to the design of the toolbox in individual functions, the users can develop their own post-processing chain of functions as shown in the use cases presented in this manuscript: the analysis of an extreme wind speed event, the generation of seasonal forecasts of snow depth based on the SNOWPACK model and the post-processing of data to be used as input for the SCHEME hydrological model.


2021 ◽  
Author(s):  
Núria Pérez-Zanón ◽  
Louis-Philippe Caron ◽  
Silvia Terzago ◽  
Bert Van Schaeybroeck ◽  
Llorenç Lledó ◽  
...  

2021 ◽  
Vol 893 (1) ◽  
pp. 012037
Author(s):  
F Lubis ◽  
I J A Saragih

Abstract The onset of the rainy season is one of the forecast products that is issued regularly by the Indonesian Agency of Meteorology, Climatology, and Geophysics (BMKG), with deterministic information about the month of which the initial 10-days (dasarian) of the rainy season will occur in each a designated area. On the other hand, state-of-the-art of seasonal forecasting methods suggests that probabilistic forecast products are potentially better for decision making. The probabilistic forecast is also more suitable for Indonesia because of the large rainfall variability that adds up to uncertainty in climate model simulations, besides complex geographical factors. The research aims to determine the onset of rainy season and monsoon over Java Island based on rainfall prediction by Constructed Analogue statistical downscaling of CFSv2 (Climate Forecast System version 2) model output. This research attempted to develop a method to produce a probabilistic forecast of the onset of the rainy season, as well as monsoon onset, by utilizing the freely available seasonal model output of CFSv2 operated by the US National Oceanic and Atmospheric Administration (NOAA). In this case, the output of the global model is dynamically downscaled using the modified Constructed Analogue (CA) method with an observational rainfall database from 26 BMKG stations and TRMM 3B43 gridded dataset. This method was then applied to perform hindcast using CFS-R (re-forecast) for the 2011-2014 period. The results show that downscaled CFS predictions with initial data in September (lead-1) give sufficient accuracy, while that initialized in August (lead-2) have large errors for both onsets of the rainy season and monsoon. Further analysis of forecast skill using the Brier score indicates that the CA scheme used in this study showed good performance in predicting the onset of the rainy season with a skill score in the range of 0.2. The probabilistic skill scores indicate that the prediction for East Java is better than the West- and Central-Java regions. It is also found that the results of CA downscaling can capture year-to-year variations, including delays in the onset of the rainy season.


2021 ◽  
Vol 1 (11) ◽  
pp. 713-724 ◽  
Author(s):  
Milan Klöwer ◽  
Miha Razinger ◽  
Juan J. Dominguez ◽  
Peter D. Düben ◽  
Tim N. Palmer

AbstractHundreds of petabytes are produced annually at weather and climate forecast centers worldwide. Compression is essential to reduce storage and to facilitate data sharing. Current techniques do not distinguish the real from the false information in data, leaving the level of meaningful precision unassessed. Here we define the bitwise real information content from information theory for the Copernicus Atmospheric Monitoring Service (CAMS). Most variables contain fewer than 7 bits of real information per value and are highly compressible due to spatio-temporal correlation. Rounding bits without real information to zero facilitates lossless compression algorithms and encodes the uncertainty within the data itself. All CAMS data are 17× compressed relative to 64-bit floats, while preserving 99% of real information. Combined with four-dimensional compression, factors beyond 60× are achieved. A data compression Turing test is proposed to optimize compressibility while minimizing information loss for the end use of weather and climate forecast data.


2021 ◽  
Vol 40 (10) ◽  
pp. 65-75
Author(s):  
Qi Shu ◽  
Fangli Qiao ◽  
Jiping Liu ◽  
Zhenya Song ◽  
Zhiqiang Chen ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andrej Ceglar ◽  
Andrea Toreti

AbstractSeasonal climate forecasts are a key component of sectoral climate services. Skill and reliability in predicting agro-climate indicators, co-designed with and for European wheat farmers, are here assessed. The main findings show how seasonal climate forecast provides useful information for decision-making processes in the European winter wheat-producing sector. Flowering time can be reliably predicted already at the beginning of the growing season in central and eastern Europe, thus supporting effective variety selection and timely planning of agro-management practices. The predictability of climate events relevant for winter wheat production is strongly dependent on the forecast initialization time as well as the nature of the event being predicted. Overall, regionally skillful and reliable predictions of drought events during the sensitive periods of wheat flowering and grain filling can be made already at the end of winter. On the contrary, predicting excessive wetness seems to be very challenging as no or very limited skill is estimated during the entire wheat growing season. Other approaches, e.g., linked to the use of large-scale atmospheric patterns, should be identified to enhance the predictability of those harmful events.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James S. Risbey ◽  
Dougal T. Squire ◽  
Amanda S. Black ◽  
Timothy DelSole ◽  
Chiara Lepore ◽  
...  

AbstractAssessments of climate forecast skill depend on choices made by the assessor. In this perspective, we use forecasts of the El Niño-Southern-Oscillation to outline the impact of bias-correction on skill. Many assessments of skill from hindcasts (past forecasts) are probably overestimates of attainable forecast skill because the hindcasts are informed by observations over the period assessed that would not be available to real forecasts. Differences between hindcast and forecast skill result from changes in model biases from the period used to form forecast anomalies to the period over which the forecast is made. The relative skill rankings of models can change between hindcast and forecast systems because different models have different changes in bias across periods.


Sign in / Sign up

Export Citation Format

Share Document