decay parameter
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Anyue Chen ◽  
Junping Li ◽  
Xiaohan Wu ◽  
Jing Zhang

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sandhya Choubey ◽  
Monojit Ghosh ◽  
Daniel Kempe ◽  
Tommy Ohlsson

Abstract We explore invisible neutrino decay in which a heavy active neutrino state decays into a light sterile neutrino state and present a comparative analysis of two baseline options, 540 km and 360 km, for the ESSnuSB experimental setup. Our analysis shows that ESSnuSB can put a bound on the decay parameter τ3/m3 = 2.64 (1.68) × 10−11 s/eV for the baseline option of 360 (540) km at 3σ. The expected bound obtained for 360 km is slightly better than the corresponding one of DUNE for a charged current (CC) analysis. Furthermore, we show that the capability of ESSnuSB to discover decay, and to measure the decay parameter precisely, is better for the baseline option of 540 km than that of 360 km. Regarding effects of decay in δCP measurements, we find that in general the CP violation discovery potential is better in the presence of decay. The change in CP precision is significant if one assumes decay in data but no decay in theory.


2021 ◽  
Vol 180 ◽  
pp. 466-475
Author(s):  
Salma Mahmoud ◽  
Florian Sobieczky ◽  
Jorge Martinez-Gil ◽  
Patrick Praher ◽  
Bernhard Freudenthaler

2019 ◽  
Vol 123 (18) ◽  
Author(s):  
D. G. Ireland ◽  
M. Döring ◽  
D. I. Glazier ◽  
J. Haidenbauer ◽  
M. Mai ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Ruslan N. Tazhigulov ◽  
James R. Gayvert ◽  
Melissa Wei ◽  
Ksenia B. Bravaya

<p>eMap is a web-based platform for identifying and visualizing electron or hole transfer pathways in proteins based on their crystal structures. The underlying model can be viewed as a coarse-grained version of the Pathways model, where each tunneling step between hopping sites represented by electron transfer active (ETA) moieties is described with one effective decay parameter that describes protein-mediated tunneling. ETA moieties include aromatic amino acid residue side chains and aromatic fragments of cofactors that are automatically detected, and, in addition, electron/hole residing sites that can be specified by the users. The software searches for the shortest paths connecting the user-specified electron/hole source to either all surface-exposed ETA residues or to the user-specified target. The identified pathways are ranked based on their length. The pathways are visualized in 2D as a graph, in which each node represents an ETA site, and in 3D using available protein visualization tools. Here, we present the capability and user interface of eMap 1.0, which is available at https://emap.bu.edu.</p>


2019 ◽  
Author(s):  
Ruslan N. Tazhigulov ◽  
James R. Gayvert ◽  
Melissa Wei ◽  
Ksenia B. Bravaya

<p>eMap is a web-based platform for identifying and visualizing electron or hole transfer pathways in proteins based on their crystal structures. The underlying model can be viewed as a coarse-grained version of the Pathways model, where each tunneling step between hopping sites represented by electron transfer active (ETA) moieties is described with one effective decay parameter that describes protein-mediated tunneling. ETA moieties include aromatic amino acid residue side chains and aromatic fragments of cofactors that are automatically detected, and, in addition, electron/hole residing sites that can be specified by the users. The software searches for the shortest paths connecting the user-specified electron/hole source to either all surface-exposed ETA residues or to the user-specified target. The identified pathways are ranked based on their length. The pathways are visualized in 2D as a graph, in which each node represents an ETA site, and in 3D using available protein visualization tools. Here, we present the capability and user interface of eMap 1.0, which is available at https://emap.bu.edu.</p>


Sign in / Sign up

Export Citation Format

Share Document