A series of HPW/CeO2 catalysts generated from 12-tungstophosphoric acid, H3PW12O40 (HPW), supported on ceria and presenting different tungsten loadings (2, 4.5, 9, 16, and 40 wt% W) were prepared and characterized by N2 physisorption, XRD, IR, Raman, and UV-Vis. The different characterization techniques suggested that low loading of tungsten resulted in mainly isolated sites, while high tungsten loading produced polymeric or tungsten clusters. Those materials exhibited high activity in NH3-SCR of NOx into N2. Moreover, the series of experiments indicated that low loading in tungsten (2% HPW/CeO2) displayed the highest activity with a remarkable N2 selectivity (99%) at medium-high temperature (300–515 °C), owing to the high amount of monomeric tungstate coverage on the catalyst surface.