maxwell system
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 96)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Canlin Gan

This paper deals with the following system \begin{equation*} \left\{\begin{aligned} &{-\Delta u+ (\lambda A(x)+1)u-(2\omega+\phi) \phi u=\mu f(u)+u^{5}}, & & {\quad x \in \mathbb{R}^{3}}, \\ &{\Delta \phi=(\omega+\phi) u^{2}}, & & {\quad x \in \mathbb{R}^{3}}, \end{aligned}\right. \end{equation*} where $\lambda, \mu>0$ are positive parameters. Under some suitable conditions on $A$ and $f$, we show the boundedness of Cerami sequence for the above system by adopting Poho\v{z}aev identity and then prove the existence of ground state solution for the above system on Nehari manifold by using Br\’{e}zis-Nirenberg technique, which improve the existing result in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunting Li ◽  
Yaqiong Liu ◽  
Yunhui Yi

AbstractThis paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: $$ \textstyle\begin{cases} (-\Delta )^{\frac{\alpha }{2}}u(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast v^{p_{1}} )v^{p_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ (-\Delta )^{\frac{\alpha }{2}}v(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast u^{q_{1}} )u^{q_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ u(x)\geq 0,\quad\quad v(x)\geq 0, \quad x\in \mathbb{R}^{n}, \end{cases} $$ { ( − Δ ) α 2 u ( x ) = ( 1 | ⋅ | σ ∗ v p 1 ) v p 2 ( x ) , x ∈ R n , ( − Δ ) α 2 v ( x ) = ( 1 | ⋅ | σ ∗ u q 1 ) u q 2 ( x ) , x ∈ R n , u ( x ) ≥ 0 , v ( x ) ≥ 0 , x ∈ R n , where $0<\alpha \leq 2$ 0 < α ≤ 2 , $n\geq 2$ n ≥ 2 , $0<\sigma <n$ 0 < σ < n , and $0< p_{1}, q_{1}\leq \frac{2n-\sigma }{n-\alpha }$ 0 < p 1 , q 1 ≤ 2 n − σ n − α , $0< p_{2}, q_{2}\leq \frac{n+\alpha -\sigma }{n-\alpha }$ 0 < p 2 , q 2 ≤ n + α − σ n − α . Applying a variant (for nonlocal nonlinearity) of the direct method of moving spheres for fractional Laplacians, which was developed by W. Chen, Y. Li, and R. Zhang (J. Funct. Anal. 272(10):4131–4157, 2017), we derive the explicit forms for positive solution $(u,v)$ ( u , v ) in the critical case and nonexistence of positive solutions in the subcritical cases.


Sign in / Sign up

Export Citation Format

Share Document