window length
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 62)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shoma Hattori ◽  
Shinji Nozue ◽  
Yoshiaki Ihara ◽  
Koji Takahashi

AbstractTo evaluate the expiratory sounds produced during swallowing recorded simultaneously with videofluorographic examination of swallowing (VF) using fast Fourier transform (FFT), and to examine the relationship between dysphagia and its acoustic characteristics. A total of 348 samples of expiratory sounds were collected from 61 patients with dysphagia whose expiratory sounds were recorded during VF. The VF results were evaluated by one dentist and categorized into three groups: safe group (SG), penetration group (PG), and aspiration group (AG). The duration and maximum amplitude of expiratory sounds produced were measured as the domain characteristics on the time waveform of these sounds and compared among the groups. Time window-length appropriate for FFT and acoustic discriminate values (AD values) of SG, PG, and AG were also investigated. The groups were analyzed using analysis of variance and Scheffé's multiple comparison method. The maximum amplitude of SG was significantly smaller than those of PG and AG. The mean duration in SG (2.05 s) was significantly longer than those in PG (0.84 s) and AG (0.96 s). The AD value in SG was significantly lower than those in PG and AG. AD value detects penetration or aspiration, and can be useful in screening for dysphagia.


2022 ◽  
Vol 15 ◽  
Author(s):  
Xiangxin Li ◽  
Yue Zheng ◽  
Yan Liu ◽  
Lan Tian ◽  
Peng Fang ◽  
...  

Surface electromyogram-based pattern recognition (sEMG-PR) has been considered as the most promising method to control multifunctional prostheses for decades. However, the commercial applications of sEMG-PR in prosthetic control is still limited due to the ambient noise and impedance variation between electrodes and skin surface. In order to reduce these issues, a force-myography-based pattern recognition method was proposed. In this method, a type of polymer-based flexible film sensors, the piezoelectrets, were used to record the rate of stress change (RSC) signals on the muscle surface of eight able-bodied subjects for six hand motions. Thirteen time domain features and four classification algorithms of linear discriminant analysis (LDA), K-nearest neighbor (KNN), artificial neural network (ANN), and support vector machine (SVM) were adopted to decode the RSC signals of different motion classes. In addition, the optimal feature set, classifier, and analysis window length were investigated systematically. Results showed that the average classification accuracy was 95.5 ± 2.2% by using the feature combination of root mean square (RMS) and waveform length (WL) for the classifier of KNN, and the analysis window length of 300 ms was found to obtain the best classification performance. Moreover, the robustness of the proposed method was investigated, and the classification accuracies were observed above 90% even when the white noise ratio increased to 50%. The work of this study demonstrated the effectiveness of RSC-based pattern recognition method for motion classification, and it would provide an alternative approach for the control of multifunctional prostheses.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 54
Author(s):  
Leonardo Ricci ◽  
Antonio Politi

We analyze the permutation entropy of deterministic chaotic signals affected by a weak observational noise. We investigate the scaling dependence of the entropy increase on both the noise amplitude and the window length used to encode the time series. In order to shed light on the scenario, we perform a multifractal analysis, which allows highlighting the emergence of many poorly populated symbolic sequences generated by the stochastic fluctuations. We finally make use of this information to reconstruct the noiseless permutation entropy. While this approach works quite well for Hénon and tent maps, it is much less effective in the case of hyperchaos. We argue about the underlying motivations.


2021 ◽  
Author(s):  
◽  
Jiawen Chua

<p>In most real-time systems, particularly for applications involving system identification, latency is a critical issue. These applications include, but are not limited to, blind source separation (BSS), beamforming, speech dereverberation, acoustic echo cancellation and channel equalization. The system latency consists of an algorithmic delay and an estimation computational time. The latter can be avoided by using a multi-thread system, which runs the estimation process and the processing procedure simultaneously. The former, which consists of a delay of one window length, is usually unavoidable for the frequency-domain approaches. For frequency-domain approaches, a block of data is acquired by using a window, transformed and processed in the frequency domain, and recovered back to the time domain by using an overlap-add technique.  In the frequency domain, the convolutive model, which is usually used to describe the process of a linear time-invariant (LTI) system, can be represented by a series of multiplicative models to facilitate estimation. To implement frequency-domain approaches in real-time applications, the short-time Fourier transform (STFT) is commonly used. The window used in the STFT must be at least twice the room impulse response which is long, so that the multiplicative model is sufficiently accurate. The delay constraint caused by the associated blockwise processing window length makes most the frequency-domain approaches inapplicable for real-time systems.  This thesis aims to design a BSS system that can be used in a real-time scenario with minimal latency. Existing BSS approaches can be integrated into our system to perform source separation with low delay without affecting the separation performance. The second goal is to design a BSS system that can perform source separation in a non-stationary environment.  We first introduce a subspace approach to directly estimate the separation parameters in the low-frequency-resolution time-frequency (LFRTF) domain. In the LFRTF domain, a shorter window is used to reduce the algorithmic delay of the system during the signal acquisition, e.g., the window length is shorter than the room impulse response. The subspace method facilitates the deconvolution of a convolutive mixture to a new instantaneous mixture and simplifies the estimation process.  Second, we propose an alternative approach to address the algorithmic latency problem. The alternative method enables us to obtain the separation parameters in the LFRTF domain based on parameters estimated in the high-frequency-resolution time-frequency (HFRTF) domain, where the window length is longer than the room impulse response, without affecting the separation performance.  The thesis also provides a solution to address the BSS problem in a non-stationary environment. We utilize the ``meta-information" that is obtained from previous BSS operations to facilitate the separation in the future without performing the entire BSS process again. Repeating a BSS process can be computationally expensive. Most conventional BSS algorithms require sufficient signal samples to perform analysis and this prolongs the estimation delay. By utilizing information from the entire spectrum, our method enables us to update the separation parameters with only a single snapshot of observation data. Hence, our method minimizes the estimation period, reduces the redundancy and improves the efficacy of the system.  The final contribution of the thesis is a non-iterative method for impulse response shortening. This method allows us to use a shorter representation to approximate the long impulse response. It further improves the computational efficiency of the algorithm and yet achieves satisfactory performance.</p>


2021 ◽  
Author(s):  
◽  
Jiawen Chua

<p>In most real-time systems, particularly for applications involving system identification, latency is a critical issue. These applications include, but are not limited to, blind source separation (BSS), beamforming, speech dereverberation, acoustic echo cancellation and channel equalization. The system latency consists of an algorithmic delay and an estimation computational time. The latter can be avoided by using a multi-thread system, which runs the estimation process and the processing procedure simultaneously. The former, which consists of a delay of one window length, is usually unavoidable for the frequency-domain approaches. For frequency-domain approaches, a block of data is acquired by using a window, transformed and processed in the frequency domain, and recovered back to the time domain by using an overlap-add technique.  In the frequency domain, the convolutive model, which is usually used to describe the process of a linear time-invariant (LTI) system, can be represented by a series of multiplicative models to facilitate estimation. To implement frequency-domain approaches in real-time applications, the short-time Fourier transform (STFT) is commonly used. The window used in the STFT must be at least twice the room impulse response which is long, so that the multiplicative model is sufficiently accurate. The delay constraint caused by the associated blockwise processing window length makes most the frequency-domain approaches inapplicable for real-time systems.  This thesis aims to design a BSS system that can be used in a real-time scenario with minimal latency. Existing BSS approaches can be integrated into our system to perform source separation with low delay without affecting the separation performance. The second goal is to design a BSS system that can perform source separation in a non-stationary environment.  We first introduce a subspace approach to directly estimate the separation parameters in the low-frequency-resolution time-frequency (LFRTF) domain. In the LFRTF domain, a shorter window is used to reduce the algorithmic delay of the system during the signal acquisition, e.g., the window length is shorter than the room impulse response. The subspace method facilitates the deconvolution of a convolutive mixture to a new instantaneous mixture and simplifies the estimation process.  Second, we propose an alternative approach to address the algorithmic latency problem. The alternative method enables us to obtain the separation parameters in the LFRTF domain based on parameters estimated in the high-frequency-resolution time-frequency (HFRTF) domain, where the window length is longer than the room impulse response, without affecting the separation performance.  The thesis also provides a solution to address the BSS problem in a non-stationary environment. We utilize the ``meta-information" that is obtained from previous BSS operations to facilitate the separation in the future without performing the entire BSS process again. Repeating a BSS process can be computationally expensive. Most conventional BSS algorithms require sufficient signal samples to perform analysis and this prolongs the estimation delay. By utilizing information from the entire spectrum, our method enables us to update the separation parameters with only a single snapshot of observation data. Hence, our method minimizes the estimation period, reduces the redundancy and improves the efficacy of the system.  The final contribution of the thesis is a non-iterative method for impulse response shortening. This method allows us to use a shorter representation to approximate the long impulse response. It further improves the computational efficiency of the algorithm and yet achieves satisfactory performance.</p>


Author(s):  
Everaldo Freitas Guedes

In this paper, we proposed a statistical test for the Detrending Moving-Average Cross-Correlation Coefficient ([Formula: see text]). With this methodology, it is possible to evaluate the statistical significance of [Formula: see text] for different confidence levels. The test was applied to financial market and climatological data. Findings on this research show that rejection or non-rejection of the null hypothesis of [Formula: see text] depends on the size [Formula: see text] of the series and the moving average window length [Formula: see text] evaluated. Our findings also show a behavioral pattern in the critical values of [Formula: see text]. Fixing the size of the series [Formula: see text], as the size of the moving average window length [Formula: see text] increases, the critical values tend to increase.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Erin M. Schnellinger ◽  
Wei Yang ◽  
Stephen E. Kimmel

Abstract Background Prediction models inform many medical decisions, but their performance often deteriorates over time. Several discrete-time update strategies have been proposed in the literature, including model recalibration and revision. However, these strategies have not been compared in the dynamic updating setting. Methods We used post-lung transplant survival data during 2010-2015 and compared the Brier Score (BS), discrimination, and calibration of the following update strategies: (1) never update, (2) update using the closed testing procedure proposed in the literature, (3) always recalibrate the intercept, (4) always recalibrate the intercept and slope, and (5) always refit/revise the model. In each case, we explored update intervals of every 1, 2, 4, and 8 quarters. We also examined how the performance of the update strategies changed as the amount of old data included in the update (i.e., sliding window length) increased. Results All methods of updating the model led to meaningful improvement in BS relative to never updating. More frequent updating yielded better BS, discrimination, and calibration, regardless of update strategy. Recalibration strategies led to more consistent improvements and less variability over time compared to the other updating strategies. Using longer sliding windows did not substantially impact the recalibration strategies, but did improve the discrimination and calibration of the closed testing procedure and model revision strategies. Conclusions Model updating leads to improved BS, with more frequent updating performing better than less frequent updating. Model recalibration strategies appeared to be the least sensitive to the update interval and sliding window length.


2021 ◽  
Author(s):  
Trystan Leng ◽  
Edward M Hill ◽  
Matt J Keeling ◽  
Michael J Tildesley ◽  
Robin N Thompson

The reduction in SARS-CoV-2 transmission from contact tracing applications (apps) depends both on the number of contacts notified and on the probability that those contacts quarantine after notification.Referring to the number of days preceding a positive test that contacts are notified as an app's notification window, we use an epidemiological model of SARS-CoV-2 transmission that captures the profile of infection to consider the trade-off between notification window length and active app-usage. We focus on 5-day and 2-day windows, the lengths used by the NHS COVID-19 app in England and Wales before and after 2nd August 2021, respectively. Short windows can be more effective at reducing transmission if they are associated with higher levels of active app usage and adherence to isolation upon notification, demonstrating the importance of understanding adherence to control measures when setting notification windows for COVID-19 apps.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuebin Liu ◽  
Xuesong Yuan ◽  
Chang Liu ◽  
Hao Ma ◽  
Chongyang Lian

Over the recent years, the study of time series visualization has attracted great interests. Numerous scholars spare their great efforts to analyze the time series using complex network technology with the intention to carry out information mining. While Visibility Graph and corresponding spin-off technologies are widely adopted. In this paper, we try to apply a couple of models derived from basic Visibility Graph to construct complex networks on one-dimension or multi-dimension stock price time series. As indicated by the results of intensive simulation, we can predict the optimum window length for certain time series for the network construction. This optimum window length is long enough to the majority of stock price SVG whose data length is 1-year. The optimum length is 70% of the length of stock price data series.


Sign in / Sign up

Export Citation Format

Share Document