plasma proteome
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 138)

H-INDEX

48
(FIVE YEARS 8)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 162
Author(s):  
Nicolai Bjødstrup Palstrøm ◽  
Rune Matthiesen ◽  
Lars Melholt Rasmussen ◽  
Hans Christian Beck

The human plasma proteome mirrors the physiological state of the cardiovascular system, a fact that has been used to analyze plasma biomarkers in routine analysis for the diagnosis and monitoring of cardiovascular diseases for decades. These biomarkers address, however, only a very limited subset of cardiovascular diseases, such as acute myocardial infarct or acute deep vein thrombosis, and clinical plasma biomarkers for the diagnosis and stratification cardiovascular diseases that are growing in incidence, such as heart failure and abdominal aortic aneurysm, do not exist and are urgently needed. The discovery of novel biomarkers in plasma has been hindered by the complexity of the human plasma proteome that again transforms into an extreme analytical complexity when it comes to the discovery of novel plasma biomarkers. This complexity is, however, addressed by recent achievements in technologies for analyzing the human plasma proteome, thereby facilitating the possibility for novel biomarker discoveries. The aims of this article is to provide an overview of the recent achievements in technologies for proteomic analysis of the human plasma proteome and their applications in cardiovascular medicine.


2022 ◽  
Author(s):  
Daniel Hornburg ◽  
Shadi Ferdosi ◽  
Moaraj Hasan ◽  
Behzad Tangeysh ◽  
Tristan R. Brown ◽  
...  

We have developed a scalable system that leverages protein nano interactions to overcome current limitations of deep plasma proteomics in large cohorts. Introducing proprietary engineered nanoparticles (NPs) into a biofluid such as blood plasma leads to the formation of a selective and reproducible protein corona at the particle protein interface, driven by the relationship between protein-NP affinity and protein abundance. Here we demonstrate the importance of tuning the protein to NP surface ratio (P/NP), which determines the competition between proteins for binding. We demonstrate how optimized P/NP ratio affects protein corona composition, ultimately enhancing performance of a fully automated NP based deep proteomic workflow (Proteograph). By limiting the available binding surface of NPs and increasing the binding competition, we identify 1.2 to 1.7x more proteins with only 1% false discovery rate on the surface of each NP, and up to 3x compared to a standard neat plasma proteomics workflow. Moreover, increased competition means proteins are more consistently identified and quantified across replicates, yielding precise quantification and improved coverage of the plasma proteome when using multiple physicochemically distinct NPs. In summary, by optimizing NPs and assay conditions, we capture a larger and more diverse set of proteins, enabling deep proteomic studies at scale.


2022 ◽  
Author(s):  
Priya Ghodasara ◽  
Nana Satake ◽  
Pawel Sadowski ◽  
Steven Kopp ◽  
Paul C. Mills

SWATH-MS provides comprehensive protein profile of cattle plasma in response to tissue injury induced pain and inflammation.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6267
Author(s):  
Sungchan Gwark ◽  
Hee-Sung Ahn ◽  
Jeonghun Yeom ◽  
Jiyoung Yu ◽  
Yumi Oh ◽  
...  

The plasma proteome of 51 non-metastatic breast cancer patients receiving neoadjuvant chemotherapy (NCT) was prospectively analyzed by high-resolution mass spectrometry coupled with nano-flow liquid chromatography using blood drawn at the time of diagnosis. Plasma proteins were identified as potential biomarkers, and their correlation with clinicopathological variables and survival outcomes was analyzed. Of 51 patients, 20 (39.2%) were HR+/HER2-, five (9.8%) were HR+/HER2+, five (9.8%) were HER2+, and 21 (41.2%) were triple-negative subtype. During a median follow-up of 52.0 months, there were 15 relapses (29.4%) and eight deaths (15.7%). Four potential biomarkers were identified among differentially expressed proteins: APOC3 had higher plasma concentrations in the pathological complete response (pCR) group, whereas MBL2, ENG, and P4HB were higher in the non-pCR group. Proteins statistically significantly associated with survival and capable of differentiating low- and high-risk groups were MBL2 and P4HB for disease-free survival, P4HB for overall survival, and MBL2 for distant metastasis-free survival (DMFS). In the multivariate analysis, only MBL2 was a consistent risk factor for DMFS (HR: 9.65, 95% CI 2.10–44.31). The results demonstrate that the proteomes from non-invasive sampling correlate with pCR and survival in breast cancer patients receiving NCT. Further investigation may clarify the role of these proteins in predicting prognosis and thus their therapeutic potential for the prevention of recurrence.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2456
Author(s):  
Wolfgang Bauer ◽  
Marcus Weber ◽  
Eva Diehl-Wiesenecker ◽  
Noa Galtung ◽  
Monika Prpic ◽  
...  

Background: We evaluated how plasma proteomic signatures in patients with suspected COVID-19 can unravel the pathophysiology, and determine kinetics and clinical outcome of the infection. Methods: Plasma samples from patients presenting to the emergency department (ED) with symptoms of COVID-19 were stratified into: (1) patients with suspected COVID-19 that was not confirmed (n = 44); (2) non-hospitalized patients with confirmed COVID-19 (n = 44); (3) hospitalized patients with confirmed COVID-19 (n = 53) with variable outcome; and (4) patients presenting to the ED with minor diseases unrelated to SARS-CoV-2 infection (n = 20). Besides standard of care diagnostics, 177 circulating proteins related to inflammation and cardiovascular disease were analyzed using proximity extension assay (PEA, Olink) technology. Results: Comparative proteome analysis revealed 14 distinct proteins as highly associated with SARS-CoV-2 infection and 12 proteins with subsequent hospitalization (p < 0.001). ADM, IL-6, MCP-3, TRAIL-R2, and PD-L1 were each predictive for death (AUROC curve 0.80–0.87). The consistent increase of these markers, from hospital admission to intensive care and fatality, supported the concept that these proteins are of major clinical relevance. Conclusions: We identified distinct plasma proteins linked to the presence and course of COVID-19. These plasma proteomic findings may translate to a protein fingerprint, helping to assist clinical management decisions.


2021 ◽  
Vol 53 (12) ◽  
pp. 1712-1721
Author(s):  
Egil Ferkingstad ◽  
Patrick Sulem ◽  
Bjarni A. Atlason ◽  
Gardar Sveinbjornsson ◽  
Magnus I. Magnusson ◽  
...  

EBioMedicine ◽  
2021 ◽  
Vol 74 ◽  
pp. 103723
Author(s):  
Wen Zhong ◽  
Ozlem Altay ◽  
Muhammad Arif ◽  
Fredrik Edfors ◽  
Levent Doganay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document