spontaneous emission
Recently Published Documents


TOTAL DOCUMENTS

4362
(FIVE YEARS 462)

H-INDEX

121
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Behzad Sangshekan ◽  
Mostafa Sahrai ◽  
Seyyed Hossein Asadpour ◽  
Jafar Poursamad Bonab

AbstractA five-level atomic system is proposed in vicinity of a two-dimensional (2D) plasmonic nanostructure with application in atom-photon entanglement. The behavior of the atom-photon entanglement is discussed with and without a control laser field. The amount of atom-photon entanglement is controlled by the quantum interference created by the plasmonic nanostructure. Thus, the degree of atom-photon entanglement is affected by the atomic distance from the plasmonic nanostructure. In the presence of a control field, maximum entanglement between the atom and its spontaneous emission field is observed.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 211
Author(s):  
Claudia Triolo ◽  
Maria Luisa De Giorgi ◽  
Antonella Lorusso ◽  
Arianna Cretì ◽  
Saveria Santangelo ◽  
...  

Over the past decade, interest about metal halide perovskites has rapidly increased, as they can find wide application in optoelectronic devices. Nevertheless, although thermal evaporation is crucial for the development and engineering of such devices based on multilayer structures, the optical properties of thermally deposited perovskite layers (spontaneous and amplified spontaneous emission) have been poorly investigated. This paper is a study from a nano- to micro- and macro-scale about the role of light-emitting species (namely free carriers and excitons) and trap states in the spontaneous emission of thermally evaporated thin layers of CH3NH3PbBr3 perovskite after wet air UV light trap passivation. The map of light emission from grains, carried out by SNOM at the nanoscale and by micro-PL techniques, clearly indicates that free and localized excitons (EXs) are the dominant light-emitting species, the localized excitons being the dominant ones in the presence of crystallites. These species also have a key role in the amplified spontaneous emission (ASE) process: for higher excitation densities, the relative contribution of localized EXs basically remains constant, while a clear competition between ASE and free EXs spontaneous emission is present, which suggests that ASE is due to stimulated emission from the free EXs.


2022 ◽  
Author(s):  
Yaser Delir ghaleh joughi ◽  
Mostafa Sahrai

Abstract Utilizing the vortex beams, we investigate the entanglement between the triple-quantum dot molecule and its spontaneous emission field. We present the spatially dependent quantum dot-photon entanglement created by Laguerre-Gaussian (LG) fields. The degree of position-dependent entanglement (DEM) is controlled by the angular momentum of the LG light and the quantum tunneling effect created by the gate voltage. Various spatial-dependent entanglement distribution is reached just by the magnitude and the sign of the orbital angular momentum (OAM) of the optical vortex beam.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Saif M. H. Qaid ◽  
Hamid M. Ghaithan ◽  
Khulod K. AlHarbi ◽  
Abrar F. Bin Ajaj ◽  
Bandar Ali Al-Asbahi ◽  
...  

The high crystal quality of formamidium lead bromide perovskite (CH(NH2)2PbBr3 = FAPbBr3) was infiltrated in a mesoporous TiO2 network. Then, high-quality FAPbBr3 films were evaluated as active lasing media, and were irradiated with a picosecond pulsed laser to demonstrate amplified spontaneous emission (ASE), which is a better benchmark of its intrinsic suitability for gain applications. The behavior was investigated using two excitation wavelengths of 440 nm and 500 nm. Due to the wavelength-dependent absorbance spectrum and the presence of a surface adsorption layer that could be reduced using the shorter 440 nm wavelength, the ASE power dependence was strongly reliant on the excitation wavelength. The ASE state was achieved with a threshold energy density of ~200 µJ/cm2 under 440 nm excitation. Excitation at 500 nm, on the other hand, needed a higher threshold energy density of ~255 µJ/cm2. The ASE threshold carrier density, on the other hand, was expected to be ~4.5 × 1018 cm−3 for both excitations. A redshift of the ASE peak was detected as bandgap renormalization (BGR), and a BGR constant of ~5–7 × 10−9 eV cm was obtained.


2021 ◽  
Author(s):  
Shen Tan ◽  
Yan Li ◽  
Hao-shi Zhang ◽  
Xiao-wei Wang ◽  
Jing Jin

Abstract A model of three-level amplified spontaneous emission (ASE) sources, considering radiation effect, is proposed to predict radiation induced loss of output power in radiation environment. Radiation absorption parameters of ASE sources model are obtained by the fitting of color centers generation and recovery process of and gain loss data at lower dose rate. Gain loss data at higher dose is applied for self-validating. This model takes both the influence of erbium ions absorption and photon bleaching effect into consideration, which makes the prediction of different dose and dose rate more accurate and flexible. The fitness value between ASE model and gain loss data is 99.98%, which also satisfies the extrapolation at the low dose rate. The method and model may serve as a valuable tool to predict ASE performance in harsh environment.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015002
Author(s):  
Mohammad Sadegh Kazempourfard ◽  
Hamid Nadgaran ◽  
Seyed Mahdi Mousavi

Abstract In this paper, the effects of pump pulse fluence on the output energy and amplified spontaneous emission (ASE) of a femtosecond regenerative amplifier are investigated. One can easily enhance the output energy of laser amplifiers by increasing their pump fluence. This in turn can increase the ASE and reduce the performance of amplifiers in terms of output beam quality, beam stability, etc. This effect would eventually lead to what is called ‘temporal intensity contrast deterioration’. In this work, it is shown that an optimum state of the pump pulse fluence can indeed optimize the amount of the output energy from a regenerative amplifier without much reducing the performance of the amplifier due to the higher ASE. Temporal gain characteristics were employed to achieve this optimum value for a better design, performance, and maintenance of femtosecond laser amplifiers. The results of the current study can be effectively used in designing a wide range of regenerative amplifiers for femtosecond pulses.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 572
Author(s):  
Xinyue Zhang ◽  
Xuelin Zhai ◽  
Can Tao ◽  
Ning Wang ◽  
Ying Zhong ◽  
...  

The spontaneous-emission enhancement effect of a single metallic rectangular-aperture optical nanoantenna on a SiO2 substrate was investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons (SPPs) in the aperture, an intuitive and comprehensive SPP model was established. The model can comprehensively predict the total spontaneous emission rate, the radiative emission rate and the angular distribution of the far-field emission of a point source in the aperture. Two phase-matching conditions are derived from the model for predicting the resonance and show that the spontaneous-emission enhancement by the antenna comes from the Fabry–Perot resonance of the SPP in the aperture. In addition, when scanning the position of the point source and the aperture length, the SPP model does not need to repeatedly solve the Maxwell’s equations, which shows a superior computational efficiency compared to the full-wave numerical method.


Sign in / Sign up

Export Citation Format

Share Document