cortical endoplasmic reticulum
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 3)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Kathryn W. Li ◽  
Michelle S. Lu ◽  
Yuichiro Iwamoto ◽  
David G. Drubin ◽  
Ross T. A. Pedersen

Some organelles cannot be synthesized anew, so they are segregated into daughter cells during cell division. In Saccharomyces cerevisiae, daughter cells bud from mother cells and are populated by organelles inherited from the mothers. To determine whether this organelle inheritance occurs in a stereotyped manner, we tracked organelles using fluorescence microscopy. We describe a program for organelle inheritance in budding yeast. The cortical endoplasmic reticulum (ER) and peroxisomes are inherited concomitant with bud emergence. Next, vacuoles are inherited in small buds, followed closely by mitochondria. Finally, the nucleus and perinuclear ER are inherited when buds have nearly reached their maximal size. Because organelle inheritance timing correlates with bud morphology, which is coupled to the cell cycle, we tested whether disrupting the cell cycle alters organelle inheritance order. By arresting cell cycle progression but allowing continued bud growth, we determined that organelle inheritance still occurs when DNA replication is blocked, and that the general inheritance order is maintained. Thus, organelle inheritance follows a preferred order during polarized cell division and does not require completion of S-phase.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Vlad Costache ◽  
Celine Hebras ◽  
Gerard Pruliere ◽  
Lydia Besnardeau ◽  
Margaux Failla ◽  
...  

2017 ◽  
Author(s):  
Vlad Costache ◽  
Celine Hebras ◽  
Gerard Pruliere ◽  
Lydia Besnardeau ◽  
Margaux Failla ◽  
...  

AbstractUnequal cell division (UCD) is a fundamental process responsible for creating sibling cell size asymmetry; however, how microtubules are specifically depolymerized on one aster of the mitotic spindle creating a smaller sibling cell during UCD has remained elusive. Using invertebrate chordate embryos (ascidian) that possess a large cortical structure (CAB) that causes UCD, we identified a microtubule depolymerase (Kif2) involved in creating cell size asymmetry. Kif2 localizes to the cortical subdomain of endoplasmic reticulum in the CAB. During three successive UCDs, Kif2 protein accumulates at the CAB during interphase and is delocalized from the CAB in mid mitosis. Rapid imaging of microtubule dynamics at the cortex revealed that microtubules do not penetrate the CAB during interphase. Inhibition of Kif2 function prevents the development of mitotic aster asymmetry and centrosome movement towards the CAB thereby blocking UCD, whereas locally increasing microtubule depolymerization causes exaggerated asymmetric spindle positioning. This study provides insights into the fundamental process of UCD and for the first time shows that a microtubule depolymerase is localized to a cortical site controlling UCD.


2016 ◽  
Vol 474 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Keisuke Obara ◽  
Akio Kihara

Yeast cells sense alterations in the plasma membrane (PM) lipid asymmetry and external alkalization by the sensor protein Rim21, which functions in the Rim101 pathway. Rim101 signaling is initiated at the PM by the recruitment of the Rim101 signaling complex. The PM physically associates with the cortical endoplasmic reticulum (ER) to form ER–PM contact sites, where several signaling events, lipid exchange, and ion transport take place. In the present study, we investigated the spatial relationship between ER–PM contact sites and the sites of Rim101 signaling. Rim101 signaling mostly proceeds outside ER–PM contact sites in the PM and did not require intact ER–PM contact for its activation. Rather, the Rim101 pathway was constitutively activated by ER–PM contact site disruption, which is known to cause ER stress. ER stress induced by tunicamycin treatment activated the Rim101 pathway. Furthermore, the sensitivity of cells to tunicamycin without ER–PM contact was considerably elevated by the deletion of RIM21. These results suggest that the Rim101 pathway is important for the adaptation to ER stress by compensating for alterations in PM lipid asymmetry induced by ER stress.


2016 ◽  
Vol 57 (11) ◽  
pp. 2380-2391 ◽  
Author(s):  
Masako Fukuda ◽  
Yasushi Kawagoe ◽  
Takahiro Murakami ◽  
Haruhiko Washida ◽  
Aya Sugino ◽  
...  

2015 ◽  
Vol 26 (15) ◽  
pp. 2833-2844 ◽  
Author(s):  
Amanda K. Casey ◽  
Shuliang Chen ◽  
Peter Novick ◽  
Susan Ferro-Novick ◽  
Susan R. Wente

The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions.


Sign in / Sign up

Export Citation Format

Share Document