parallel reaction
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 81)

H-INDEX

30
(FIVE YEARS 6)

EBioMedicine ◽  
2022 ◽  
Vol 75 ◽  
pp. 103793
Author(s):  
Elena Camporesi ◽  
Johanna Nilsson ◽  
Agathe Vrillon ◽  
Emmanuel Cognat ◽  
Claire Hourregue ◽  
...  

2021 ◽  
Author(s):  
Andres V. Reyes ◽  
Ruben Shrestha ◽  
Peter R. Baker ◽  
Robert J. Chalkley ◽  
Shou-Ling Xu

AbstractAccurate relative quantification is critical in proteomic studies. The incorporation of stable isotope 15N to plant-expressed proteins in vivo is a powerful tool for accurate quantification with a major advantage of reducing preparative and analytical variabilities. However, 15N labeling quantification has several challenges. Less identifications are often observed in the heavy labeled samples because of incomplete labeling, resulting in missing values in reciprocal labeling experiments. Inaccurate quantification can happen when there is contamination from co-eluting peptides or chemical noise in the MS1 survey scan. These drawbacks in quantification can be more pronounced in less abundant but biologically interesting proteins, which often have very few identified peptides. Here we demonstrate the application of parallel reaction monitoring (PRM) to 15N labeled samples on a high resolution, high mass accuracy Orbitrap mass spectrometer to achieve reliable quantification even of low abundance proteins in samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weiwei Qin ◽  
Xiao Zhang ◽  
Lingnan Chen ◽  
Qiujie Li ◽  
Benwang Zhang ◽  
...  

AbstractUrine is a promising resource for biomarker research. Therefore, the purpose of this study was to investigate potential urinary biomarkers to monitor the disease activity of ventilator-induced lung injury (VILI). In the discovery phase, a label-free data-dependent acquisition (DDA) quantitative proteomics method was used to profile the urinary proteomes of VILI rats. For further validation, the differential proteins were verified by parallel reaction monitoring (PRM)-targeted quantitative proteomics. In total, 727 high-confidence proteins were identified with at least 1 unique peptide (FDR ≤ 1%). Compared to the control group, 110 proteins (65 upregulated, 45 downregulated) were significantly changed in the VILI group (1.5-fold change, P < 0.05). The canonical pathways and protein–protein interaction analyses revealed that the differentially expressed proteins were enriched in multiple functions, including oxidative stress and inflammatory responses. Finally, thirteen proteins were identified as candidate biomarkers for VILI by PRM validation. Among these PRM-validated proteins, AMPN, MEP1B, LYSC1, DPP4 and CYC were previously reported as lung-associated disease biomarkers. SLC31, MEP1A, S15A2, NHRF1, XPP2, GGT1, HEXA, and ATPB were newly discovered in this study. Our results suggest that the urinary proteome might reflect the pathophysiological changes associated with VILI. These differential proteins are potential urinary biomarkers for the activity of VILI.


2021 ◽  
pp. 126402
Author(s):  
Fangjun Chen ◽  
Fengxia Zhang ◽  
Shiliang Yang ◽  
Huili Liu ◽  
Hua Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document