synchrotron light
Recently Published Documents


TOTAL DOCUMENTS

945
(FIVE YEARS 96)

H-INDEX

34
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Florian Trinter ◽  
Tsveta Miteva ◽  
Miriam Weller ◽  
Alexander Hartung ◽  
Martin Richter ◽  
...  

We investigate interatomic Coulombic decay in NeKr dimers after neon inner-valence photoionization [Ne+(2s-1)] using a synchrotron light source. We measure with energy resolution the two singly charged ions of the...


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
XianRong Huang ◽  
Xianbo Shi ◽  
Lahsen Assoufid

Rigorous dynamical theory calculations show that four-beam diffraction (4BD) can be activated only by a unique photon energy and a unique incidence direction. Thus, 4BD may be used to precisely calibrate X-ray photon energies and beam positions. Based on the principles that the forbidden-reflection 4BD pattern, which is typically an X-shaped cross, can be generated by instant imaging using the divergent beam from a point source without rocking the crystal, a detailed real-time high-resolution beam (and source) position monitoring scheme is illustrated for monitoring two-dimensional beam positions and directions of modern synchrotron light sources, X-ray free-electron lasers and nano-focused X-ray sources.


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Edwin O. Lazo ◽  
Stephen Antonelli ◽  
Jun Aishima ◽  
Herbert J. Bernstein ◽  
Dileep Bhogadi ◽  
...  

A correction in the paper by Lazo et al. [(2021). J. Synchrotron Rad. 28, 1649–1661] is made.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Itamar T. Neckel ◽  
Lucas F. de Castro ◽  
Flavia Callefo ◽  
Verônica C. Teixeira ◽  
Angelo L. Gobbi ◽  
...  

AbstractShedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.


Author(s):  
Fabien Plassard ◽  
Guimei Wang ◽  
Timur Shaftan ◽  
Victor Smaluk ◽  
Yongjun Li ◽  
...  

2021 ◽  
pp. 99-105
Author(s):  
Antonina Smygacheva ◽  
Vladimir Korchuganov ◽  
Evgenii Fomin

The Project of complete modernization of a current accelerator complex and the making of the 3-d generation light source is in progress in the NRC «Kurchatov Institute». A new booster synchrotron is part of the injection complex for a new synchrotron light source. It must ensure reliable and stable operation of the upgraded main storage ring. The paper presents the lattice of a new booster synchrotron and its main parameters.


2021 ◽  
Vol 118 (47) ◽  
pp. e2108568118
Author(s):  
Serena R. Alfarano ◽  
Simone Pezzotti ◽  
Christopher J. Stein ◽  
Zhou Lin ◽  
Federico Sebastiani ◽  
...  

The double layer at the solid/electrolyte interface is a key concept in electrochemistry. Here, we present an experimental study combined with simulations, which provides a molecular picture of the double-layer formation under applied voltage. By THz spectroscopy we are able to follow the stripping away of the cation/anion hydration shells for an NaCl electrolyte at the Au surface when decreasing/increasing the bias potential. While Na+ is attracted toward the electrode at the smallest applied negative potentials, stripping of the Cl− hydration shell is observed only at higher potential values. These phenomena are directly measured by THz spectroscopy with ultrabright synchrotron light as a source and rationalized by accompanying molecular dynamics simulations and electronic-structure calculations.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Maik Kahnt ◽  
Konstantin Klementiev ◽  
Vahid Haghighat ◽  
Clemens Weninger ◽  
Tomás S. Plivelic ◽  
...  

The CoSAXS beamline at the MAX IV Laboratory is a modern multi-purpose (coherent) small-angle X-ray scattering (CoSAXS) instrument, designed to provide intense and optionally coherent illumination at the sample position, enabling coherent imaging and speckle contrast techniques. X-ray tracing simulations used to design the beamline optics have predicted a total photon flux of 1012–1013 photons s−1 and a degree of coherence of up to 10% at 7.1 keV. The normalized degree of coherence and the coherent flux of this instrument were experimentally determined using the separability of a ptychographic reconstruction into multiple mutually incoherent modes and thus the Coherence in the name CoSAXS was verified. How the beamline can be used both for coherent imaging and XPCS measurements, which both heavily rely on the degree of coherence of the beam, was demonstrated. These results are the first experimental quantification of coherence properties in a SAXS instrument at a fourth-generation synchrotron light source.


2021 ◽  
Vol 22 (18) ◽  
pp. 9937
Author(s):  
Miquel Nuez-Martínez ◽  
Leire Pedrosa ◽  
Immaculada Martinez-Rovira ◽  
Ibraheem Yousef ◽  
Diouldé Diao ◽  
...  

The anionic cobaltabis (dicarbollide) [3,3′-Co(1,2-C2B9H11)2]−, [o-COSAN]−, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]− could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600–2.500 cm−1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]−, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]− translocates GIC cells’ membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.


Sign in / Sign up

Export Citation Format

Share Document