binomial tree model
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 11)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 41 (1) ◽  
pp. 26-40
Author(s):  
Sadia Anjum Jumana ◽  
ABM Shahadat Hossain

In this work, we discuss some very simple and extremely efficient lattice models, namely, Binomial tree model (BTM) and Trinomial tree model (TTM) for valuing some types of exotic barrier options in details. For both these models, we consider the concept of random walks in the simulation of the path which is followed by the underlying stock price. Our main objective is to estimate the value of barrier options by using BTM and TTM for different time steps and compare these with the exact values obtained by the benchmark Black-Scholes model (BSM). Moreover, we analyze the convergence of these lattice models for these exotic options. All the results have been shown numerically as well as graphically. GANITJ. Bangladesh Math. Soc.41.1 (2021) 26-40


2021 ◽  
pp. 331-396
Author(s):  
Giuseppe Campolieti ◽  
Roman N. Makarov

Author(s):  
Yoshifumi Muroi ◽  
Ryota Saeki ◽  
Shintaro Suda

This paper suggests a new Fourier analysis approach to evaluate the option prices and its sensitivities (Greeks) using the binomial tree model. In the last half of this paper, we show that option prices are efficiently and effectively evaluated using a semi-closed form formula for European option prices. We can compute option prices in a broad class of jump-diffusion models because we calculate the characteristic function for an underlying asset price numerically. Furthermore, we also compute the price of European options in the exp-Levy model. This numerical experiment gives new insights into option pricing in the nonparametric Levy model. The option prices and sensitivities can be computed very accurately and efficiently, even in binomial tree models with jumps.


Sign in / Sign up

Export Citation Format

Share Document