variable gain amplifier
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 52)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Zhenhua Xu ◽  
Fanyi Meng ◽  
Kaixue Ma ◽  
Haipeng Fu ◽  
Xiangyang Duan ◽  
...  

2021 ◽  
Author(s):  
Minkyo Shim ◽  
Woonghee Lee ◽  
Yunhee Lee ◽  
Deog-Kyoon Jeong

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

Abstract Analysis, design, and characterization of an E-band Variable Gain Amplifier (VGA) in SiGe BiCMOS commercial technology is presented. VGA topologies are compared in terms of their capability to contribute to receiver linearity and dynamic range. The proposed VGA is based on a Gilbert multiplier cell exploiting current cancellation to enhance control range and linearity. A 1 dB bandwidth ranging from 80 to 100 GHz, a 24 dB gain control range and a −11.5 dBm input 1 dB compression point have been measured.


Author(s):  
Ehsan Semsar Parapari ◽  
Elmira Semsar Parapari ◽  
Ziaaddin Daei Koozehkanani ◽  
Siroos Toofan

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 804
Author(s):  
Gibeom Shin ◽  
Kyunghwan Kim ◽  
Kangseop Lee ◽  
Hyun-Hak Jeong ◽  
Ho-Jin Song

This paper presents a variable-gain amplifier (VGA) in the 68–78 GHz range. To reduce DC power consumption, the drain voltage was set to 0.5 V with competitive performance in the gain and the noise figure. High-Q shunt capacitors were employed at the gate terminal of the core transistors to move input matching points for easy matching with a compact transformer. The four stages amplifier fabricated in 40-nm bulk complementary metal oxide semiconductor (CMOS) showed a peak gain of 24.5 dB at 71.3 GHz and 3‑dB bandwidth of more than 10 GHz in 68–78 GHz range with approximately 4.8-mW power consumption per stage. Gate-bias control of the second stage in which feedback capacitances were neutralized with cross-coupled capacitors allowed us to vary the gain by around 21 dB in the operating frequency band. The noise figure was estimated to be better than 5.9 dB in the operating frequency band from the full electromagnetic (EM) simulation.


Sign in / Sign up

Export Citation Format

Share Document