hiv latency
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 91)

H-INDEX

39
(FIVE YEARS 7)

2022 ◽  
Vol 20 ◽  
Author(s):  
Marco Custodio ◽  
Jennifer Sparks ◽  
Timothy E. Long

Abstract: This article reviews preclinical and clinical studies on the repurposed use of disulfiram (Antabuse) as an antimicrobial agent. Preclinical research covered on the alcohol sobriety aid include uses as an anti-MRSA agent, a carbapenamase inhibitor, antifungal drug for candidiasis, and a treatment for parasitic diseases due to protozoa (e.g., giardiasis, leishmaniasis, malaria) and helminthes (e.g., schistosomiasis, trichuriasis). Past, current, and pending clinical studies on disulfiram as a post-Lyme disease syndrome (PTLDS) therapy, an HIV latency reversal agent, and an intervention for COVID-19 infections are also reviewed.


Author(s):  
Meenakshi Shukla ◽  
Fredrick Kizito ◽  
Uri Mbonye ◽  
Kien Nguyen ◽  
Curtis Dobrowolski ◽  
...  

AIDS ◽  
2021 ◽  
Vol 35 (13) ◽  
pp. 2221-2224
Author(s):  
Avril Kirsten Moses ◽  
Terisha Ghazi ◽  
Dhaneshree Bestinee Naidoo ◽  
Anil Chuturgoon
Keyword(s):  

AIDS ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
James H. Mcmahon ◽  
Vanessa A. Evans ◽  
Jillian S.Y. Lau ◽  
Jori Symons ◽  
Jennifer M. Zerbato ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (9) ◽  
pp. e1009581
Author(s):  
Uri Mbonye ◽  
Konstantin Leskov ◽  
Meenakshi Shukla ◽  
Saba Valadkhan ◽  
Jonathan Karn

The switch between HIV latency and productive transcription is regulated by an auto-feedback mechanism initiated by the viral trans-activator Tat, which functions to recruit the host transcription elongation factor P-TEFb to proviral HIV. A heterodimeric complex of CDK9 and one of three cyclin T subunits, P-TEFb is expressed at vanishingly low levels in resting memory CD4+ T cells and cellular mechanisms controlling its availability are central to regulation of the emergence of HIV from latency. Using a well-characterized primary T-cell model of HIV latency alongside healthy donor memory CD4+ T cells, we characterized specific T-cell receptor (TCR) signaling pathways that regulate the generation of transcriptionally active P-TEFb, defined as the coordinate expression of cyclin T1 and phospho-Ser175 CDK9. Protein kinase C (PKC) agonists, such as ingenol and prostratin, stimulated active P-TEFb expression and reactivated latent HIV with minimal cytotoxicity, even in the absence of intracellular calcium mobilization with an ionophore. Unexpectedly, inhibition-based experiments demonstrated that PKC agonists and TCR-mobilized diacylglycerol signal through MAP kinases ERK1/2 rather than through PKC to effect the reactivation of both P-TEFb and latent HIV. Single-cell and bulk RNA-seq analyses revealed that of the four known isoforms of the Ras guanine nucleotide exchange factor RasGRP, RasGRP1 is by far the predominantly expressed diacylglycerol-dependent isoform in CD4+ T cells. RasGRP1 should therefore mediate the activation of ERK1/2 via Ras-Raf signaling upon TCR co-stimulation or PKC agonist challenge. Combined inhibition of the PI3K-mTORC2-AKT-mTORC1 pathway and the ERK1/2 activator MEK prior to TCR co-stimulation abrogated active P-TEFb expression and substantially suppressed latent HIV reactivation. Therefore, contrary to prevailing models, the coordinate reactivation of P-TEFb and latent HIV in primary T cells following either TCR co-stimulation or PKC agonist challenge is independent of PKC but rather involves two complementary signaling arms of the TCR cascade, namely, RasGRP1-Ras-Raf-MEK-ERK1/2 and PI3K-mTORC2-AKT-mTORC1.


Sign in / Sign up

Export Citation Format

Share Document