<p>Throughout Earth&#8217;s history, the coincidence in time between Large Igneous Province eruptions and mass extinctions points out a potential causality, where volcanic degassing may drive the global-scale climatic and environmental changes leading to biotic crises. The volcanic activity of the Central Atlantic Magmatic Province (CAMP, ca. 201 Ma), one of Earth&#8217;s most voluminous Large Igneous Provinces, is synchronous with the end-Triassic mass extinction event, among the most severe extinctions during the Phanerozoic. Combining different in situ analytical techniques (optical microscopy, confocal Raman microspectroscopy, EMP, SEM-EDS, and NanoSIMS analyses), bubble-bearing melt inclusions within basaltic rocks revealed the abundance of CO<sub>2</sub> (up to 1.0 wt.%) in CAMP magmas [1]. Gaseous CO<sub>2&#160;</sub>and solid elemental C, alternatively preserved by gas exsolution bubbles within melt inclusions mainly hosted in clinopyroxene crystal clots, represent direct evidence for large amounts of volcanic CO<sub>2</sub>&#160;(up to 10<sup>5</sup>&#8201;Gt) emitted into Earth&#8217;s surface during the entire CAMP activity [1]. The entrapment conditions of these melt inclusions within clinopyroxene aggregates constrain the degassed CO<sub>2</sub> to a mantle and/or lower-middle crustal origin, indicating a deep source of carbon which may favour rapid and intense CAMP eruption pulses. Each magmatic pulse may have injected CO<sub>2</sub> into the end-Triassic atmosphere in amounts similar to those projected for the anthropogenic emissions during the 21<sup>st</sup> century [1]. Therefore, volcanic CO<sub>2</sub> degassed during CAMP eruptions likely contributed to end-Triassic global warming and ocean acidification with catastrophic consequences for the biosphere.</p><p>&#160;</p><p>[1] Capriolo et al. (2020),&#160;Nat. Commun.&#160;<strong>11</strong>,&#160;1670.</p>