nurse cells
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 31)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Lauren Penfield ◽  
Denise Montell

Cells migrate collectively through confined environments during development and cancer metastasis. While the nucleus, a large and stiff organelle, impedes cell migration between non-deformable pillars in vitro, its function in vivo may vary depending on the microenvironment. Further, it is unknown how nuclei contribute to collective migration in vivo and whether nuclei in different positions within cell collectives experience different forces. Here, we use border cell migration in the fly ovary as an in vivo model to investigate the effects of confined, collective migration on nuclei and the contribution of nuclear lamins to migration. We found severe yet transient nuclear deformations occur, particularly in the leading cell, as border cells squeeze through tiny crevices between germline cells, termed nurse cells. Leading cells extend protrusions between nurse cells, which may pry open space to allow the cluster to advance. Here we report that the leading cell nuclei deformed as they moved into leading protrusions. Then as protrusions widened, the nucleus recovered a more circular shape. These data suggest that lead cell nuclei may help protrusions expand and thereby enlarge the migration path. To test how nuclei might promote or impede border cell migration, we investigated nuclear lamins, proteins that assemble into intermediate filaments and structurally support the nuclear envelope. Depletion of the Drosophila B-type lamin, Lam, from the outer, motile border cells, but not the inner, nonmotile polar cells, impeded border cell migration, whereas perturbations of the A-type lamin, LamC, did not. While wild type border cell clusters typically have one large leading protrusion as they delaminate from the anterior follicular epithelium, clusters depleted of B-type lamin had multiple, short-lived protrusions, resulting in unproductive cluster movement and failure to progress along the migration path. Further, border cell nuclei depleted of B-type lamins were small, formed blebs, and ruptured. Together, these data indicate that B-type lamin is requied for nuclear integrity, which in turn stabilizes the leading protrusion and promotes overall cluster polarization and collective movement through confined spaces.


2021 ◽  
Author(s):  
Wen Lu ◽  
Margot Lakonishok ◽  
Anna S. Serpinskaya ◽  
Vladimir I Gelfand

Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth, and assumed that it transports cargoes along microtubule tracks from nurse cells to the oocyte. Here we report that instead transporting cargoes along microtubules into the oocyte, cortical dynein actively moves microtubules in nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. We demonstrate this microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein can perform bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of cargo transport for fast cytoplasmic transfer to support rapid oocyte growth.  


2021 ◽  
Author(s):  
Wanbao Niu ◽  
Allan C Spradling

Mammalian oocytes develop initially in cysts containing many more germ cells than the primordial oocytes they generate. We identified abundant nurse cells with reduced unique molecular identifiers (UMI)/cell from ovaries aged E14.5 to P1. Low UMI nurse cells are found in cysts and express the same major meiotic genes as pro-oocytes of the same stage, suggesting they are oocyte sisters that are signaled to transfer cytoplasm at different times and only subsequently diverge. Oocyte vs nurse cell selection occurs in cysts with a robust microtubule cytoskeleton, that closely interact with somatic cells and that develop a dense actin cytoskeleton around nurse cell nuclei that are held back from cytoplasmic transfer. Mouse and Drosophila nurse cells undergo programmed cell death by acidification from adjacent somatic pre-granulosa cells that express V-ATPases and cathepsin proteins. Disrupting acidification in cultured mouse ovaries blocked nurse cell turnover. About 200 genes are induced in mouse dictyate oocytes as previously reported, including Tuba1c and Tubb2b, genes that we find contribute to Balbiani body formation. Thus, mouse oocytes are specified within germline cysts and develop with the assistance of nurse cells using highly conserved mechanisms.


Development ◽  
2021 ◽  
Author(s):  
Roxan A. Stephenson ◽  
Jonathon M. Thomalla ◽  
Lili Chen ◽  
Petra Kolkhof ◽  
Roger P. White ◽  
...  

Because both dearth and overabundance of histones result in cellular defects, histone synthesis and demand are typically tightly coupled. In Drosophila embryos, histones H2B/H2A/H2Av accumulate on lipid droplets (LDs), cytoplasmic fat storage organelles. Without LD-binding, maternally provided H2B/H2A/H2Av are absent, but how LDs ensure histone storage is unclear. Using quantitative imaging, we uncover when during oogenesis these histones accumulate, and which step of accumulation is LD-dependent. LDs originate in nurse cells (NCs) and are transported to the oocyte. Although H2Av accumulates on LDs in NCs, the majority of the final H2Av pool is synthesized in oocytes. LDs promote intercellular transport of the histone-anchor Jabba and thus its presence in the ooplasm. Ooplasmic Jabba then prevents H2Av degradation, safeguarding the H2Av stockpile. Our findings provide insight into the mechanism for establishing histone stores during Drosophila oogenesis and shed light on the function of LDs as protein-sequestration sites.


Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. eabh0556 ◽  
Author(s):  
Jincheng Long ◽  
James Walker ◽  
Wenjing She ◽  
Billy Aldridge ◽  
Hongbo Gao ◽  
...  

The plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and regulates meiosis. Here, we reveal the molecular mechanism underlying this reprogramming. We demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by 24-nucleotide small interfering RNAs (siRNAs) transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) through activity of CLSY3, a chromatin remodeler absent in other anther cells. Tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Tapetum-derived siRNAs also silence germline transposons, safeguarding genome integrity. Our results reveal that tapetal siRNAs are sufficient to reconstitute germline methylation patterns and drive functional methylation reprogramming throughout the male germline.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1454
Author(s):  
Diane Patricia Vig Lebo ◽  
Kimberly McCall

Throughout oogenesis, Drosophila egg chambers traverse the fine line between survival and death. After surviving the ten early and middle stages of oogenesis, egg chambers drastically change their size and structure to produce fully developed oocytes. The development of an oocyte comes at a cost, the price is the lives of the oocyte’s 15 siblings, the nurse cells. These nurse cells do not die of their own accord. Their death is dependent upon their neighbors—the stretch follicle cells. Stretch follicle cells are nonprofessional phagocytes that spend the final stages of oogenesis surrounding the nurse cells and subsequently forcing the nurse cells to give up everything for the sake of the oocyte. In this review, we provide an overview of cell death in the ovary, with a focus on recent findings concerning this phagocyte-dependent non-autonomous cell death.


2021 ◽  
Author(s):  
Jong Hyuk Kim ◽  
Ashley J. Schulte ◽  
Aaron L. Sarver ◽  
Mathew G. Angelos ◽  
Aric M. Frantz ◽  
...  

Hemangiosarcoma and angiosarcoma are soft tissue sarcomas of malignant blood vessel-forming cells in dogs and humans, respectively. These vasoformative sarcomas are aggressive and highly metastatic, with disorganized, irregular blood-filled vascular spaces. Our objective was to define molecular programs that support the niche, enabling progression of canine hemangiosarcoma and human angiosarcoma. Here, we show that the transcriptional landscape of canine hemangiosarcoma and human angiosarcoma included comparable angiogenic and inflammatory programs. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized, and they were lined by both donor and host cells, a trait that was not observed in xenografts from canine osteosarcoma and lymphoma. In some cases, the xenografted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. We did not uncover a definitive transmissible etiology, but our data indicate that transcriptional programs of hemangiosarcoma cells resemble those of hematopoietic nurse cells, and these malignant cells support expansion and differentiation of human hematopoietic progenitors. We conclude that canine hemangiosarcoma, and possibly human angiosarcoma, originate from nurse cells that make up the stromal bone marrow niche, and that these cells may also support the growth of hematopoietic tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel P. Strange ◽  
Boonyanudh Jiyarom ◽  
Hooman Sadri-Ardekani ◽  
Lisa H. Cazares ◽  
Tara A. Kenny ◽  
...  

Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in its ability to be sexually transmitted. The testes have been implicated as sites of long-term ZIKV replication, and our previous studies have identified Sertoli cells (SC), the nurse cells of the seminiferous epithelium that govern spermatogenesis, as major targets of ZIKV infection. To improve our understanding of the interaction of ZIKV with human SC, we analyzed ZIKV-induced proteome changes in these cells using high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data demonstrated that interferon (IFN) signaling was the most significantly enriched pathway and the antiviral proteins MX1 and IFIT1 were among the top upregulated proteins in SC following ZIKV infection. The dynamic between IFN response and ZIKV infection kinetics in SC remains unclear, therefore we further determined whether MX1 and IFIT1 serve as antiviral effectors against ZIKV. We found that increased levels of MX1 at the later time points of infection coincided with diminished ZIKV infection while the silencing of MX1 and IFIT1 enhanced peak ZIKV propagation in SC. Furthermore, although IFN-I exposure was found to significantly hinder ZIKV replication in SC, IFN response was attenuated in these cells as compared to other cell types. The data in this study highlight IFN-I as a driver of the antiviral state that limits ZIKV infection in SC and suggests that MX1 and IFIT1 function as antiviral effectors against ZIKV in SC. Collectively, this study provides important biological insights into the response of SC to ZIKV infection and the ability of the virus to persist in the testes.


2021 ◽  
Vol 134 (8) ◽  
Author(s):  
Kara Stark ◽  
Olivia Crowe ◽  
Lindsay Lewellyn

ABSTRACT Intercellular bridges are essential for fertility in many organisms. The developing fruit fly egg has become the premier model system to study intercellular bridges. During oogenesis, the oocyte is connected to supporting nurse cells by relatively large intercellular bridges, or ring canals. Once formed, the ring canals undergo a 20-fold increase in diameter to support the movement of materials from the nurse cells to the oocyte. Here, we demonstrate a novel role for the conserved SH2/SH3 adaptor protein Dreadlocks (Dock) in regulating ring canal size and structural stability in the germline. Dock localizes at germline ring canals throughout oogenesis. Loss of Dock leads to a significant reduction in ring canal diameter, and overexpression of Dock causes dramatic defects in ring canal structure and nurse cell multinucleation. The SH2 domain of Dock is required for ring canal localization downstream of Src64 (also known as Src64B), and the function of one or more of the SH3 domains is necessary for the strong overexpression phenotype. Genetic interaction and localization studies suggest that Dock promotes WASp-mediated Arp2/3 activation in order to determine ring canal size and regulate growth. This article has an associated First Person interview with the first author of the paper.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009500
Author(s):  
Sabine Mohr ◽  
Andrew Kenny ◽  
Simon T. Y. Lam ◽  
Miles B. Morgan ◽  
Craig A. Smibert ◽  
...  

Localization of oskar mRNA includes two distinct phases: transport from nurse cells to the oocyte, a process typically accompanied by cortical anchoring in the oocyte, followed by posterior localization within the oocyte. Signals within the oskar 3’ UTR directing transport are individually weak, a feature previously hypothesized to facilitate exchange between the different localization machineries. We show that alteration of the SL2a stem-loop structure containing the oskar transport and anchoring signal (TAS) removes an inhibitory effect such that in vitro binding by the RNA transport factor, Egalitarian, is elevated as is in vivo transport from the nurse cells into the oocyte. Cortical anchoring within the oocyte is also enhanced, interfering with posterior localization. We also show that mutation of Staufen recognized structures (SRSs), predicted binding sites for Staufen, disrupts posterior localization of oskar mRNA just as in staufen mutants. Two SRSs in SL2a, one overlapping the Egalitarian binding site, are inferred to mediate Staufen-dependent inhibition of TAS anchoring activity, thereby promoting posterior localization. The other three SRSs in the oskar 3’ UTR are also required for posterior localization, including two located distant from any known transport signal. Staufen, thus, plays multiple roles in localization of oskar mRNA.


Sign in / Sign up

Export Citation Format

Share Document