graph homomorphisms
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 13 (4) ◽  
pp. 1-26
Author(s):  
Prasad Chaugule ◽  
Nutan Limaye ◽  
Aditya Varre

We present polynomial families complete for the well-studied algebraic complexity classes VF, VBP, VP, and VNP. The polynomial families are based on the homomorphism polynomials studied in the recent works of Durand et al. (2014) and Mahajan et al. (2018). We consider three different variants of graph homomorphisms, namely injective homomorphisms , directed homomorphisms , and injective directed homomorphisms , and obtain polynomial families complete for VF, VBP, VP, and VNP under each one of these. The polynomial families have the following properties: • The polynomial families complete for VF, VBP, and VP are model independent, i.e., they do not use a particular instance of a formula, algebraic branching programs, or circuit for characterising VF, VBP, or VP, respectively. • All the polynomial families are hard under p -projections.


2021 ◽  
Author(s):  
Bing Yao ◽  
Xiaohui Zhang ◽  
Jing Su ◽  
Hui Sun ◽  
Hongyu Wang

Author(s):  
Anirban Chatterjee ◽  
Rajat Subhra Hazra

In this paper, we consider the spectrum of a Laplacian matrix, also known as Markov matrices where the entries of the matrix are independent but have a variance profile. Motivated by recent works on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons. Under the assumption that these graphons converge, we show that the limiting spectral distribution converges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms. In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs including inhomogeneous Erdős–Rényi random graphs, sparse W-random graphs, stochastic block matrices and constrained random graphs.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-33
Author(s):  
Andreas Göbel ◽  
J. A. Gregor Lagodzinski ◽  
Karen Seidel

Many important graph-theoretic notions can be encoded as counting graph homomorphism problems, such as partition functions in statistical physics, in particular independent sets and colourings. In this article, we study the complexity of  # p H OMS T O H , the problem of counting graph homomorphisms from an input graph to a graph H modulo a prime number  p . Dyer and Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homomorphisms depends on the structure of the target graph. Many intractable cases in non-modular counting become tractable in modular counting due to the common phenomenon of cancellation. In subsequent studies on counting modulo 2, however, the influence of the structure of  H on the tractability was shown to persist, which yields similar dichotomies. Our main result states that for every tree  H and every prime  p the problem # p H OMS T O H is either polynomial time computable or # p P-complete. This relates to the conjecture of Faben and Jerrum stating that this dichotomy holds for every graph H when counting modulo 2. In contrast to previous results on modular counting, the tractable cases of # p H OMS T O H are essentially the same for all values of the modulo when H is a tree. To prove this result, we study the structural properties of a homomorphism. As an important interim result, our study yields a dichotomy for the problem of counting weighted independent sets in a bipartite graph modulo some prime  p . These results are the first suggesting that such dichotomies hold not only for the modulo 2 case but also for the modular counting functions of all primes  p .


Author(s):  
Nishant Chandgotia ◽  
Ron Peled ◽  
Scott Sheffield ◽  
Martin Tassy
Keyword(s):  

Author(s):  
Sonja Kraiczy ◽  
Ciaran McCreesh

Graph homomorphism problems involve finding adjacency-preserving mappings between two given graphs. Although theoretically hard, these problems can often be solved in practice using constraint programming algorithms. We show how techniques from the state-of-the-art in subgraph isomorphism solving can be applied to broader graph homomorphism problems, and introduce a new form of filtering based upon clique-finding. We demonstrate empirically that this filtering is effective for the locally injective graph homomorphism and subgraph isomorphism problems, and gives the first practical constraint programming approach to finding general graph homomorphisms.


10.37236/9903 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Luciano N. Grippo ◽  
Adrián Pastine ◽  
Pablo Torres ◽  
Mario Valencia-Pabon ◽  
Juan C. Vera

This paper considers an infection spreading in a graph; a vertex gets infected if at least two of its neighbors are infected. The $P_3$-hull number is the minimum size of a vertex set that eventually infects the whole graph. In the specific case of the Kneser graph $K(n,k)$, with $n\ge 2k+1$, an infection spreading on the family of $k$-sets of an $n$-set is considered. A set is infected whenever two sets disjoint from it are infected. We compute the exact value of the $P_3$-hull number of $K(n,k)$ for $n>2k+1$. For $n = 2k+1$, using graph homomorphisms from the Knesser graph to the Hypercube, we give lower and upper bounds.


Author(s):  
Jin-Yi Cai ◽  
Artem Govorov

Abstract We develop a theory of graph algebras over general fields. This is modelled after the theory developed by Freedman et al. (2007, J. Amer. Math. Soc.20 37–51) for connection matrices, in the study of graph homomorphism functions over real edge weight and positive vertex weight. We introduce connection tensors for graph properties. This notion naturally generalizes the concept of connection matrices. It is shown that counting perfect matchings, and a host of other graph properties naturally defined as Holant problems (edge models), cannot be expressed by graph homomorphism functions with both complex vertex and edge weights (or even from more general fields). Our necessary and sufficient condition in terms of connection tensors is a simple exponential rank bound. It shows that positive semidefiniteness is not needed in the more general setting.


2021 ◽  
pp. 262-293
Author(s):  
Pavol Hell ◽  
Jaroslav Nešetřil
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document