frictional strength
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 38)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 118 (49) ◽  
pp. e2109109118
Author(s):  
Laurence Willemet ◽  
Khoubeib Kanzari ◽  
Jocelyn Monnoyer ◽  
Ingvars Birznieks ◽  
Michaël Wiertlewski

Humans efficiently estimate the grip force necessary to lift a variety of objects, including slippery ones. The regulation of grip force starts with the initial contact and takes into account the surface properties, such as friction. This estimation of the frictional strength has been shown to depend critically on cutaneous information. However, the physical and perceptual mechanism that provides such early tactile information remains elusive. In this study, we developed a friction-modulation apparatus to elucidate the effects of the frictional properties of objects during initial contact. We found a correlation between participants’ conscious perception of friction and radial strain patterns of skin deformation. The results provide insights into the tactile cues made available by contact mechanics to the sensorimotor regulation of grip, as well as to the conscious perception of the frictional properties of an object.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
John Parnell ◽  
Connor Brolly

AbstractThe geological record following the c. 2.3 billion years old Great Oxidation Event includes evidence for anomalously high burial of organic carbon and the emergence of widespread mountain building. Both carbon burial and orogeny occurred globally over the period 2.1 to 1.8 billion years ago. Prolific cyanobacteria were preserved as peak black shale sedimentation and abundant graphite. In numerous orogens, the exceptionally carbonaceous sediments were strongly deformed by thrusting, folding, and shearing. Here an assessment of the timing of Palaeoproterozoic carbon burial and peak deformation/metamorphism in 20 orogens shows that orogeny consistently occurred less than 200 million years after sedimentation, in a time frame comparable to that of orogens through the Phanerozoic. This implies that the high carbon burial played a critical role in reducing frictional strength and lubricating compressive deformation, which allowed crustal thickening to build Palaeoproterozoic mountain belts. Further, this episode left a legacy of weakening and deformation in 2 billion year-old crust which has supported subsequent orogenies up to the building of the Himalayas today. The link between Palaeoproterozoic biomass and long-term deformation of the Earth’s crust demonstrates the integral relationship between biosphere and lithosphere.


2021 ◽  
Author(s):  
◽  
Samuel Webber

<p>Low-angle normal faults (LANFs) have induced debate due to their apparent non -Andersonian behaviour and lack of significant seismicity associated with slip. Dipping 21°/N, the Mai’iu Fault, located in the Woodlark Rift, Eastern Papua New Guinea is an active LANF that occupies a position at the transition between continental extension and seafloor spreading. Surface geomorphology indicates that the Mai’iu Fault scarp is not significantly eroded despite high rainfall and ~2900 m of relief. Based on modelling of regional campaign GPS data (Wallace et al., 2014) the Mai’iu Fault is thought to accommodate rapid (7–9 mm/yr) horizontal extension; however the slip rate of the Mai’iu Fault has not been directly validated. I use a range of methodologies, including field mapping, cosmogenic exposure dating, cosmogenic burial dating, and Mohr-Coulomb modelling, in order to provide new constraints on LANF strength and slip behaviour.  I analyse the structure of conglomeratic strata within a back -rotated rider block atop the Mai’iu Fault surface. The Gwoira rider block is a large fault-bounded sedimentary rock slice comprising the Gwoira Conglomerate, located within a large synformal megamullion in the Mai’iu Fault surface. The Gwoira Conglomerate was originally deposited on the Mai’iu Fault hanging wall concurrent with extension, and has since been buried to a maximum depth of ~2 km (evidenced by modelling of vitrinite reflectance data, and structural analysis), back-tilted, and synformally folded.   The Mai’iu Fault is also overlain by a large fault slice (the Gwoira rider block), that has been transferred from the previous LANF hanging wall to the current footwall by the initiation of the younger Gwoira Fault. Both the Gwoira Conglomerate (former hanging wall) and mylonitic foliation (footwall) of the Mai’iu Fault have been shortened ~E-W, perpendicular to the extension direction. I show that N-S trending synformal folding of the Gwoira Conglomerate was concurrent with on-going sedimentation and extension on the Mai’iu Fault. Structurally shallower Gwoira Conglomerate strata are folded less than deeper strata, indicating that folding was progressively accrued concurrent with ~N -S extension. I also show that abandonment of the inactive strand of the Mai’iu Fault in favour of the Gwoira Fault, which resulted in formation of the Gwoira rider block, occurred in response to progressive megamullion amplification and resultant misorientation of the inactive strand of the Mai’iu Fault. I attribute N-S trending synformal folding to extension-perpendicular constriction. This is consistent with numerous observations of outcrop-scale conjugate strike-slip faults that deform the footwall and hanging wall of the Mai’iu Fault (Little et al., 2015), and accommodate E-W shortening. Constrictional folding remains active in the near-surface as evidenced by synformal tilting of inferred Late Quaternary fluvial terraces atop the Gwoira rider block. In order to date this sequence of progressive constrictional folding, I have processed ten ²⁶Al/¹⁰Be terrestrial cosmogenic nuclide burial samples obtained from the Gwoira Conglomerate; unfortunately these data were not yet available at the time of printing, due to reasons outside of my control.  I also present terrestrial cosmogenic nuclide (TCN) exposure ages for ten rock samples obtained from the lowermost Mai’iu Fault scarp at Biniguni Falls, in order to determine the Holocene slip-rate and style using cosmogenic ¹⁰Be in quartz. I model exposure age data after the approach of Schlagenhauf et al. (2011), using a Monte-Carlo simulation in which fault slip rate, the period of last slip on the fault, and local erosion rate are allowed to vary. Modelling evidences that the Mai’iu Fault at Biniguni Falls is active and slipping at 13.9±4.0 mm/yr (1σ), resolved over the last 13.2±2.7 ka (1σ). Modelling constrains the time of last slip to 2.9±1.4 ka (1σ); this is consistent with a seismic event at that time, followed by non-slip on the Mai’iu Fault until the present day.  Finally, because rider block formation records abandonment of the uppermost part of a LANF, Coulomb fault mechanical analysis can be applied to field observations to provide an upper limit on LANF frictional strength (µf). Calculations are made in terms of Mohr-Coulomb mechanics, after the framework of Choi and Buck (2012). The lock-up (abandonment) orientation at any particular position on the Mai’iu Fault is principally a function of fault friction (µf), crustal friction (µc), fault cohesion (Cf), crustal cohesion (Cc), depth, fault orientation, fluid pressure, and the orientation of the greatest principle stress. Model results suggest that fault friction for the active Gwoira-Mai’iu Fault surface is 0.128≤μf≤0.265 for Cf<1.8 MPa, and 0.2≤μf≤0.265 for Cf≤0.5 MPa. Modelling of abandonment of the inactive Mai’iu Fault suggests that 0.26≤μf≤0.309 for Cf<1.8 MPa. This suggests that past slip on the inactive Mai’iu Fault, and continued slip on the active Gwoira-Mai’iu Fault, were enabled by low fault frictional strength. I also model the strength of the active Mai’iu Fault at Biniguni Falls; results suggest greater LANF friction (μf≥0.32) than the Gwoira-Mai’iu Fault surface, and inactive Mai’iu Fault. In order to explain active slip on the LANF at Biniguni Falls concurrent with widespread field observations of outcrop-scale faulting of the LANF footwall, I suggest a process whereby overall the LANF remains viable and active, but locally stress conditions exceed the LANF abandonment criteria; this results in highly localised and temporary ‘footwall damage’ where the LANF footwall is locally dissected by outcrop-scale faulting.</p>


2021 ◽  
Author(s):  
◽  
Samuel Webber

<p>Low-angle normal faults (LANFs) have induced debate due to their apparent non -Andersonian behaviour and lack of significant seismicity associated with slip. Dipping 21°/N, the Mai’iu Fault, located in the Woodlark Rift, Eastern Papua New Guinea is an active LANF that occupies a position at the transition between continental extension and seafloor spreading. Surface geomorphology indicates that the Mai’iu Fault scarp is not significantly eroded despite high rainfall and ~2900 m of relief. Based on modelling of regional campaign GPS data (Wallace et al., 2014) the Mai’iu Fault is thought to accommodate rapid (7–9 mm/yr) horizontal extension; however the slip rate of the Mai’iu Fault has not been directly validated. I use a range of methodologies, including field mapping, cosmogenic exposure dating, cosmogenic burial dating, and Mohr-Coulomb modelling, in order to provide new constraints on LANF strength and slip behaviour.  I analyse the structure of conglomeratic strata within a back -rotated rider block atop the Mai’iu Fault surface. The Gwoira rider block is a large fault-bounded sedimentary rock slice comprising the Gwoira Conglomerate, located within a large synformal megamullion in the Mai’iu Fault surface. The Gwoira Conglomerate was originally deposited on the Mai’iu Fault hanging wall concurrent with extension, and has since been buried to a maximum depth of ~2 km (evidenced by modelling of vitrinite reflectance data, and structural analysis), back-tilted, and synformally folded.   The Mai’iu Fault is also overlain by a large fault slice (the Gwoira rider block), that has been transferred from the previous LANF hanging wall to the current footwall by the initiation of the younger Gwoira Fault. Both the Gwoira Conglomerate (former hanging wall) and mylonitic foliation (footwall) of the Mai’iu Fault have been shortened ~E-W, perpendicular to the extension direction. I show that N-S trending synformal folding of the Gwoira Conglomerate was concurrent with on-going sedimentation and extension on the Mai’iu Fault. Structurally shallower Gwoira Conglomerate strata are folded less than deeper strata, indicating that folding was progressively accrued concurrent with ~N -S extension. I also show that abandonment of the inactive strand of the Mai’iu Fault in favour of the Gwoira Fault, which resulted in formation of the Gwoira rider block, occurred in response to progressive megamullion amplification and resultant misorientation of the inactive strand of the Mai’iu Fault. I attribute N-S trending synformal folding to extension-perpendicular constriction. This is consistent with numerous observations of outcrop-scale conjugate strike-slip faults that deform the footwall and hanging wall of the Mai’iu Fault (Little et al., 2015), and accommodate E-W shortening. Constrictional folding remains active in the near-surface as evidenced by synformal tilting of inferred Late Quaternary fluvial terraces atop the Gwoira rider block. In order to date this sequence of progressive constrictional folding, I have processed ten ²⁶Al/¹⁰Be terrestrial cosmogenic nuclide burial samples obtained from the Gwoira Conglomerate; unfortunately these data were not yet available at the time of printing, due to reasons outside of my control.  I also present terrestrial cosmogenic nuclide (TCN) exposure ages for ten rock samples obtained from the lowermost Mai’iu Fault scarp at Biniguni Falls, in order to determine the Holocene slip-rate and style using cosmogenic ¹⁰Be in quartz. I model exposure age data after the approach of Schlagenhauf et al. (2011), using a Monte-Carlo simulation in which fault slip rate, the period of last slip on the fault, and local erosion rate are allowed to vary. Modelling evidences that the Mai’iu Fault at Biniguni Falls is active and slipping at 13.9±4.0 mm/yr (1σ), resolved over the last 13.2±2.7 ka (1σ). Modelling constrains the time of last slip to 2.9±1.4 ka (1σ); this is consistent with a seismic event at that time, followed by non-slip on the Mai’iu Fault until the present day.  Finally, because rider block formation records abandonment of the uppermost part of a LANF, Coulomb fault mechanical analysis can be applied to field observations to provide an upper limit on LANF frictional strength (µf). Calculations are made in terms of Mohr-Coulomb mechanics, after the framework of Choi and Buck (2012). The lock-up (abandonment) orientation at any particular position on the Mai’iu Fault is principally a function of fault friction (µf), crustal friction (µc), fault cohesion (Cf), crustal cohesion (Cc), depth, fault orientation, fluid pressure, and the orientation of the greatest principle stress. Model results suggest that fault friction for the active Gwoira-Mai’iu Fault surface is 0.128≤μf≤0.265 for Cf<1.8 MPa, and 0.2≤μf≤0.265 for Cf≤0.5 MPa. Modelling of abandonment of the inactive Mai’iu Fault suggests that 0.26≤μf≤0.309 for Cf<1.8 MPa. This suggests that past slip on the inactive Mai’iu Fault, and continued slip on the active Gwoira-Mai’iu Fault, were enabled by low fault frictional strength. I also model the strength of the active Mai’iu Fault at Biniguni Falls; results suggest greater LANF friction (μf≥0.32) than the Gwoira-Mai’iu Fault surface, and inactive Mai’iu Fault. In order to explain active slip on the LANF at Biniguni Falls concurrent with widespread field observations of outcrop-scale faulting of the LANF footwall, I suggest a process whereby overall the LANF remains viable and active, but locally stress conditions exceed the LANF abandonment criteria; this results in highly localised and temporary ‘footwall damage’ where the LANF footwall is locally dissected by outcrop-scale faulting.</p>


2021 ◽  
Author(s):  
Laurence Willemet ◽  
Khoubeib Kanzari ◽  
Jocelyn Monnoyer ◽  
Ingvars Birznieks ◽  
Michael Wiertlewski

Humans efficiently estimate the grip force necessary to lift a variety of objects, including slippery ones. The regulation of grip force starts with the initial contact, and takes into account the surface properties, such as friction. This estimation of the frictional strength has been shown to depend critically on cutaneous information. However, the physical and perceptual mechanism that provides such early tactile information remains elusive. In this study, we developed a friction-modulation apparatus to elucidate the effects of the frictional properties of objects during initial contact. We found a correlation between participants' conscious perception of friction and radial strain patterns of skin deformation. The results provide insights into the tactile cues made available by contact mechanics to the sensorimotor regulation of grip, as well as to the conscious perception of the frictional properties of an object.


2021 ◽  
Author(s):  
Sarah Wigginton ◽  
Elizabeth Petrie ◽  
James Evans

We examine the mechanics of thrust fault initiation and development in sedimentary rocks which accounts for vertical variation in mechanical strength of the rocks. We use numerical mechanical models of mechanically layered rocks to examine thrust ramp nucleation in competent units, and fault propagation upward and downward into weaker units forming folds at both fault tips. We investigate the effects of mechanical stratigraphy on stress heterogeneity, rupture direction, fold formation, and fault geometry motivated by the geometry of the Ketobe Knob thrust fault in central Utah. The study incorporates finite element models to examine how mechanical stratigraphy, loading conditions, and fault configurations determine temporal and spatial variation in stress and strain. We model the predicted deformation and stress distributions in four model domains: (1) an intact, mechanically stratified rock sequence, (2) a mechanically stratified section with a range of interlayer frictional strengths, and two faulted models, (3) one with a stress boundary condition, and (4) one with a displacement boundary condition. The models show that a dramatic increase in stress develops in the competent rock layers whereas the stresses are lower in the weaker rocks. The frictional models reveal that the heterogeneous stress variations increase contact frictional strength. Faulted models contain a 20° dipping fault in the most competent unit. The models show an increase in stress in areas above and below fault tips, with extremely high stresses predicted in a ‘back thrust’ location at the lower fault tip. These findings support the hypothesis that thrust faults and associated folds at the Ketobe Knob developed in accordance with the ramp-first kinematic model and development of structures was significantly influenced by the nature of the mechanical stratigraphy.


2021 ◽  
pp. 104419
Author(s):  
Li-Wei Kuo ◽  
Wen-Jie Wu ◽  
Chia-Wei Kuo ◽  
Steven A.F. Smith ◽  
Wei-Ting Lin ◽  
...  

2021 ◽  
Author(s):  
Abdelkareem Alzo'ubi ◽  
Omer Mughieda ◽  
Manish Kewalramani

Abstract The failure mechanisms of non-continuous jointed rocks under compression loading is of great importance for the rock mechanics community; it plays an important role in understanding the fracturing pattern, the type of the fractures, and the strength of the rock mass under investigation. In this paper, the relationship between the tensile and frictional strength of jointed rock samples is investigated by numerical modeling. Previously tested samples were used to simulate the behavior of artificial jointed rock numerically under axial loading by using two strength criteria; the first assumes that tensile failure reduces shear strength parameters to their residual values (dependent behavior, Model 1) and the second assumes that tensile failure will not cause the shear strength parameters to be reduced to their residual values (independent behavior, Model 2). The numerical model, in this paper uses, Mohr-Coulomb shear strength criterion with parameters of cohesion, friction, and tensile strength cut-off as tested in the laboratory. These artificial rock samples contains open-joints with the same inclination but with different bridge’s inclinations of 45°, 60°, and 75°. These samples were tested in the laboratory under incremental uniaxial loading until failure while monitoring displacement and rupturing development. As the stress concentration increased, curvilinear yielding (wing crack) started near or at the joint tips and propagated and stopped or coalesced to form a continuous rupture surface. The numerical model showed that tensile stress concentration caused wing crack initiation due to stress flow around the pre-existing non-persistent open joints. The yielding behavior of the numerical simulations - under the two tensile strength failure criteria - and the laboratory tests shows good agreement for the three samples. However, when the shear strength and tensile strength parameters are independent, the results showed strong and significant agreement between the laboratory tests and the numerical models in terms of the yielding path, width of failure zone, and the uniaxial strength. In this all compressive load environment, stress flow caused tensile stress concentration near the joint tip and according to the results of this paper the tensile yielding should not force the shear strength parameters to go to their residual values.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiang Ding ◽  
Na Chen ◽  
Fan Zhang ◽  
Guangqing Zhang

Despite the lack of test data of the coefficient of pressure sensitivity α and the shearing cohesion k, the Drucker–Prager criterion is commonly applied for numerical analyses of geotechnical engineering. To bridge the gap between the wide application and insufficient knowledge of strength parameters of the Drucker–Prager criterion, this study presents experimentally calibrated strength parameters of this criterion for the first time. This paper proposes a new method to measure α and k in the Drucker–Prager criterion. The square root of the second invariant of the deviatoric stress tensor J 2 is linearly fitted with the first invariant of the stress tensor I 1 in the stress space. The parameters φ and c in the Mohr–Coulomb criterion and α and k in the Drucker–Prager criterion are calibrated to the same set of triaxial compression tests of sandstones. With these testing results, five pairs of conversion formulae (which are most commonly used in the literature) are examined and the most appropriate pair of conversion formulae is identified. With parameters indicating cohesive strength (c and k) and parameters indicating frictional strength ( φ and α ), the evolutions of different strength components are compared with those in the cohesion-weakening friction-strengthening model. With an increase in plastic deformation, the cohesive strength parameters c and k firstly increase to a peak value and then decrease. The frictional strength parameters φ and α gradually increase at a decreasing rate after the initial yield point.


Author(s):  
Seth Saltiel ◽  
Christine McCarthy ◽  
Timothy T. Creyts ◽  
Heather M. Savage

Abstract Observations of glacier slip over till beds, across a range of spatial and temporal scales, show abundant seismicity ranging from Mw∼−2 microearthquakes and tremor (submeter asperities and millisecond duration) to Mw∼7 slow-slip events (∼50  km rupture lengths and ∼30  min durations). A complete understanding of the mechanisms capable of producing seismic signals in these environments represents a strong constraint on bed conditions. In particular, there is a lack of experimental confirmation of velocity-weakening behavior of ice slipping on till, where friction decreases with increasing velocity—a necessity for nucleating seismic slip. To measure the frictional strength and stability of ice sliding against till, we performed a series of double-direct-shear experiments at controlled temperatures slightly above and below the ice melting point. Our results confirm velocity-strengthening ice–till slip at melting temperatures, as has been found in the few previous studies. We provide best-fit rate-and-state friction parameters and their standard deviations from averaging 13 experiments at equivalent conditions. We find evidence of similar velocity-strengthening behavior with 50% by volume debris-laden ice slid against till under the same conditions. In contrast, velocity-weakening and linear time-dependent healing of ice–till slip is present at temperatures slightly below the melting point, providing an experimentally supported mechanism for subglacial seismicity on soft-beds. The stability parameter (a−b) decreases with slip velocity, and evolution occurs over large (mm scale) displacements, suggesting that shear heating and melt buildup is responsible for the weakening. These measurements provide insight into subglacial stiffness in which seismicity of this type might be expected. We discuss glaciological circumstances pointing to potential field targets in which to test this frozen seismic asperity hypothesis.


Sign in / Sign up

Export Citation Format

Share Document