microdialysis sampling
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 15)

H-INDEX

37
(FIVE YEARS 3)

Dermato ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 47-58
Author(s):  
Katrine Baumann ◽  
Niels Peter Hell Knudsen ◽  
Anne-Sofie Østergaard Gadsbøll ◽  
Anders Woetmann ◽  
Per Stahl Skov

Skin-barrier restoration following abrasive trauma is facilitated by mediator release from skin-resident cells, a process that has been investigated primarily in mice or simplified human systems with previous studies focusing on a limited number of biomarkers. Here, we demonstrate how early events caused by skin-barrier disruption can be studied in a human ex vivo skin model. Ten relevant biomarkers were recovered from the interstitial fluid by skin microdialysis with subsequent sample analysis using a multiplex platform. As a control, the biomarker profiles obtained from microdialysis sampling were compared to profiles of skin biopsy homogenates. We found that nine (GM-CSF, CXCL1/GROα, CXCL8/IL-8 CXCL10/IP-10, IL-1α, IL-6, MIF, TNF-α, and VEGF) of the 10 biomarkers were significantly upregulated in response to abrasive trauma. Only dialysate levels of CCL27/CTACK were unaffected by skin abrasion. Biomarker levels in the homogenates corresponded to dialysate levels for CCL27/CTACK, CXCL1/GROα, CXCL8/IL-8, and IL-6. However, IL-1α showed an inverse trend in response to trauma, and biopsy levels of MIF were unchanged. GM-CSF, CXCL10/IP-10, TNF-α, and VEGF were not detected in the biopsy homogenates. Our results suggest that the human ex vivo skin model is a reliable approach to study early events after disruption of the skin barrier.


Author(s):  
Sebastian Schroepf ◽  
Daniela Burau ◽  
Hans-Georg Muench ◽  
Hartmut Derendorf ◽  
Markus Zeitlinger ◽  
...  

2020 ◽  
Vol 100 (1) ◽  
pp. 1-8
Author(s):  
K Baumann ◽  
S Falkencrone ◽  
N Knudsen ◽  
A Woetmann ◽  
S Dabelsteen ◽  
...  

2019 ◽  
Vol 36 (03) ◽  
pp. 228-234
Author(s):  
Andreas Rauff-Mortensen ◽  
Mette Marie Berggren-Olsen ◽  
Hans Kirkegaard ◽  
Kim Houlind ◽  
Hanne Birke-Sørensen

Abstract Background Microdialysis is a clinical method used to detect ischemia after microvascular surgery. Microdialysis is easy to use and reliable, but its value in most clinical settings is hampered by a 1- to 2-h delay in the delivery of patient data. This study evaluated the effectiveness of an increase in the microdialysis perfusion rate from 0.3 to 1.0 µL/min on the diagnostic delay in the detection of ischemia. Methods In eight pigs, two symmetric pure muscle transfers were dissected based on one vascular pedicle each. In each muscle, two microdialysis catheters were placed. The two microdialysis catheters were randomized to a perfusion rate of 0.3 or 1.0 µL/min, and the two muscle transfers were randomized to arterial or venous ischemia, respectively. After baseline monitoring, arterial and venous ischemia was introduced by the application of vessel clamps. Microdialysis sampling was performed throughout the experiment. The ischemic cutoff values were based on clinical experience set as follows: CGlucose < 0.2 mmol/L, CLactate > 7 mmol/L, and the lactate/pyruvate ratio > 50. Results The delay for the detection of 50% of arterial ischemia was reduced from 60 to 25 minutes, and for the detection of all cases of arterial ischemia, the delay was reduced from 75 to 40 minutes when the perfusion rate was increased from 0.3 to 1.0 µL/min. After the same increase in perfusion, the detection of 50% of venous ischemia was reduced from 75 to 40 minutes, and for all cases of venous ischemia, a reduction from 135 to 95 minutes was found. Conclusion When using microdialysis for the detection of ischemia in pure muscle transfers, an increase in the perfusion rate from 0.3 to 1.0 µL/min can reduce the detection delay of ischemia.


2019 ◽  
Vol 1722 ◽  
pp. 146360
Author(s):  
Amanda M. Furness ◽  
Ranu Pal ◽  
Elias K. Michealis ◽  
Craig E. Lunte ◽  
Susan M. Lunte

Sign in / Sign up

Export Citation Format

Share Document