efflux transporters
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 112)

H-INDEX

61
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Erkka Järvinen ◽  
Feng Deng ◽  
Wilma Kiander ◽  
Alli Sinokki ◽  
Heidi Kidron ◽  
...  

Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.


2021 ◽  
Vol 23 (1) ◽  
pp. 255
Author(s):  
Marcus Otter ◽  
Susanne Csader ◽  
Markus Keiser ◽  
Stefan Oswald

Doxorubicin is a frequently used anticancer drug to treat many types of tumors, such as breast cancer or bronchial carcinoma. The clinical use of doxorubicin is limited by its poorly predictable cardiotoxicity, the reasons of which are so far not fully understood. The drug is a substrate of several efflux transporters such as P-gp or BCRP and was recently reported to be a substrate of cation uptake transporters. To evaluate the potential role of transporter proteins in the accumulation of doxorubicin at its site of action (e.g., mammary carcinoma cells) or adverse effects (e.g., heart muscle cells), we studied the expression of important uptake and efflux transporters in human breast cancer and cardiac tissue, and investigated the affinity of doxorubicin to the identified transporters. The cellular uptake studies on doxorubicin were performed with OATP1A2*1, OATP1A2*2, and OATP1A2*3-overexpressing HEK293 cells, as well as OCT1-, OCT2-, and OCT3- overexpressing MDCKII cells. To assess the contribution of transporters to the cytotoxic effect of doxorubicin, we determined the cell viability in the presence and absence of transporter inhibitors in different cell lines. Several transporters, including P-gp, BCRP, OCT1, OCT3, and OATP1A2 were expressed in human heart and/or breast cancer tissue. Doxorubicin could be identified as a substrate of OCT1, OCT2, OCT3, and OATP1A2. The cellular uptake into cells expressing genetic OATP1A2 variants was markedly reduced and correlated well with the increased cellular viability. Inhibition of OATP1A2 (naringin) and OCT transporters (1-methyl-4-phenylpyridinium) resulted in a significant decrease of doxorubicin-mediated cytotoxicity in cell lines expressing the respective transporters. Similarly, the excipient Cremophor EL significantly inhibited the OCT1-3- and OATP1A2-mediated cellular uptake and attenuated the cytotoxicity of doxorubicin. In conclusion, genetic and environmental-related variability in the expression and function of these transporters may contribute to the substantial variability seen in terms of doxorubicin efficacy and toxicity.


Author(s):  
Mercedes Schroeder ◽  
Melissa Y. Gomez ◽  
Nathan K. McLain ◽  
Emma Gachomo

Beneficial rhizobacteria can stimulate changes in plant root development. While root system growth is mediated by multiple factors, the regulated distribution of the phytohormone auxin within root tissues plays a principal role. Auxin transport facilitators help to generate the auxin gradients and maxima that determine root structure. Here, we show that the plant growth-promoting rhizobacterial strain Bradyrhizobium japonicum IRAT FA3 influences specific auxin efflux transporters to alter Arabidopsis thaliana root morphology. Gene expression profiling of host transcripts in control and B. japonicum-inoculated roots of the wild type A. thaliana accession Col-0 confirmed upregulation of PIN2, PIN3, PIN7 and ABCB19 with B. japonicum and identified genes potentially contributing to a diverse array of auxin-related responses. Co-cultivation of the bacterium with loss-of-function auxin efflux transport mutants revealed that B. japonicum requires PIN3, PIN7 and ABCB19 to increase lateral root development and utilizes PIN2 to reduce primary root length. Accelerated lateral root primordia production due to B. japonicum was not observed in single pin3, pin7 or abcb19 mutants, suggesting independent roles for PIN3, PIN7 and ABCB19 during the plant-microbe interaction. Our work demonstrates B. japonicum’s influence over host transcriptional reprogramming during plant interaction with this beneficial microbe and the subsequent alterations to root system architecture.


Author(s):  
Xieyi Zhang ◽  
Wangyang Liu ◽  
Kazue Edaki ◽  
Yuta Nakazawa ◽  
Hiroki Kamioka ◽  
...  

Multidrug resistance (MDR) due to enhanced drug efflux activity of tumor cells can severely impact the efficacy of antitumor therapies. We recently showed that increased activity of the efflux transporter P-glycoprotein (P-gp) associated with activation of Snail transcriptional regulators may be mediated mainly by moesin in lung cancer cells. Here, we aimed to systematically evaluate the relationships among mRNA expression levels of efflux transporters (P-gp, breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2)), scaffold proteins (ezrin (Ezr), radixin (Rdx), and moesin (Msn); ERM proteins), and SNAI family members (Snail, Slug, and Smac) in clinical lung cancer and noncancer samples. We found high correlations between relative (cancer/noncancer) mRNA expression levels of Snail and Msn, Msn and P-gp, Slug and MRP2, and Smuc and BCRP. These findings support our previous conclusion that Snail regulates P-gp activity via Msn and further suggest that Slug and Smuc may contribute to the functional regulation of MRP2 and BCRP, respectively, in lung cancer cells. This trial is registered with UMIN000023923.


2021 ◽  
Vol 22 (21) ◽  
pp. 11936
Author(s):  
Dimitrios Vagiannis ◽  
Youssif Budagaga ◽  
Anselm Morell ◽  
Yu Zhang ◽  
Eva Novotná ◽  
...  

Tepotinib is a novel tyrosine kinase inhibitor recently approved for the treatment of non-small cell lung cancer (NSCLC). In this study, we evaluated the tepotinib’s potential to perpetrate pharmacokinetic drug interactions and modulate multidrug resistance (MDR). Accumulation studies showed that tepotinib potently inhibits ABCB1 and ABCG2 efflux transporters, which was confirmed by molecular docking. In addition, tepotinib inhibited several recombinant cytochrome P450 (CYP) isoforms with varying potency. In subsequent drug combination experiments, tepotinib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCB1 and ABCG2 overexpression, respectively. Remarkably, MDR-modulatory properties were confirmed in ex vivo explants derived from NSCLC patients. Furthermore, we demonstrated that anticancer effect of tepotinib is not influenced by the presence of ABC transporters associated with MDR, although monolayer transport assays designated it as ABCB1 substrate. Finally, tested drug was observed to have negligible effect on the expression of clinically relevant drug efflux transporters and CYP enzymes. In conclusion, our findings provide complex overview on the tepotinib’s drug interaction profile and suggest a promising novel therapeutic strategy for future clinical investigations.


Author(s):  
Mandeep Kaur ◽  
◽  
Tulika Gupta ◽  
Mili Gupta ◽  
Parampreet S. Kharbanda ◽  
...  

About 30% of epileptic patients do not react to anti-epileptic drugs leading to refractory seizures. The pathogenesis of drug-resistance in Mesial Temporal Lobe Epilepsy (MTLE) is not completely understood. Increased activity of drug-efflux transporters might be involved, resulting in subclinical concentrations of the drug at the target site. The major drug-efflux transporters are permeability glycoprotein (P-gp) and multidrug-resistance associated protein-1 (MRP-1). The major drawback so far is the expressional analysis of transporters in equal numbers of drug-resistant epileptic tissue and age-matched non-epileptic tissue. We have studied these two transporters in the sclerotic hippocampal tissues resected from the epilepsy surgery (n=15) and compared their expression profile with the tissues resected from non-epileptic autopsy cases (n=15). Statistically significant over expression of both P-gp (p-value <0.0001) and MRP-1 (p-value 0.01) at gene and protein levels was found in the MTLE cases. The fold change of P-gp was more pronounced than MRP-1. Immunohistochemistry of patient group showed increased immunoreactivity of P-gp at blood brain barrier and increased reactivity of MRP-1 in parenchyma. The results were confirmed by confocal immunofluorescence microscopy. The study demonstrated that P-gp in association with MRP-1 might be responsible for the multi-drug resistance in epilepsy


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-rui Sun ◽  
Qiu-shi Guo ◽  
Wei Zhou ◽  
Min Li

AbstractChinese herbal medicine is widely used because it has a good safety profile and few side effects. However, the risk of adverse drug reactions caused by herb-drug interactions (HDIs) is often overlooked. Therefore, the task of identifying possible HDIs and elucidating their mechanisms is of great significance for the prevention and treatment of HDI-related adverse reactions. Since extract from Dioscorea bulbifera L. rhizomes (DB) can cause various degrees of liver damage, it is speculated that HDIs may occur between DB extract and chemicals metabolized or excreted by the liver. Our study revealed that the cardiotoxicity of pirarubicin (THP) was increased by co-administration of DB, and the expression of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2) in the liver was inhibited by DB extract, which led to the accumulation of THP in heart tissue. In conclusion, there are risks of the co-administration of DB extract and THP. The mechanism of HDIs can be better revealed by targeting the efflux transporters.


Sign in / Sign up

Export Citation Format

Share Document