stiffened plates
Recently Published Documents


TOTAL DOCUMENTS

701
(FIVE YEARS 118)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 82 ◽  
pp. 103140
Author(s):  
Kshitij Shrivastava ◽  
Kiran Vijayan ◽  
Vikas Arora

2022 ◽  
Vol 10 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Vinícius Torres Pinto ◽  
Luiz Alberto Oliveira Rocha ◽  
Elizaldo Domingues dos Santos ◽  
Liércio André Isoldi

When it comes to engineering, high performance is always a desired goal. In this context, regarding stiffened plates, the search for better geometric configurations able to minimize the out-of-plane displacements become interesting. So, this study aimed to analyze several stiffened plates defined by the Constructal Design Method (CDM) and solved through the Finite Element Method (FEM) using the ANSYS® software. After that, these plates are compared among each other through the Exhaustive Search (ES) technique. To do so, a non-stiffened rectangular plate was adopted as reference. Then, a portion of its steel volume was converted into stiffeners through the ϕ parameter, which represents the ratio between the volume of the stiffeners and the total volume of the reference plate. Taking into consideration the value of ϕ = 0.3, 75 different stiffened plates arrangements were proposed: 25 with rectangular stiffeners oriented at 0°; 25 with rectangular stiffeners oriented at 45° and 25 with trapezoidal stiffeners oriented at 0°. Maintaining the total volume of material constant, it was investigated the geometry influence on the maximum deflection of these stiffened plates. The results have shown trapezoidal stiffeners oriented at 0° are more effective to reduce the maximum deflections than rectangular stiffeners also oriented at 0°. It was also observed that rectangular stiffeners oriented at 45° presented the smallest maximum deflections for the majority of the analyzed cases, when compared to the trapezoidal and rectangular stiffeners oriented at 0°.


2022 ◽  
Vol 244 ◽  
pp. 110426
Author(s):  
Kang Hu ◽  
Ping Yang ◽  
Tian Xia ◽  
Yuelin Song ◽  
Bihao Chen

Author(s):  
K Woloszyk ◽  
Y Garbatov

The work is focused on the reliability of corroded stiffened plates subjected to compressive uniaxial load based on the progressive collapse approach as stipulated by the Common Structural Rules for Bulk Carriers and Oil Tankers, employing the limit state design. Two different cases have been investigated. In the first model, the corrosion degradation led to uniform thickness loss, whereas the mechanical properties were unchanged, as given in the Rules. In the second model, the plate thickness degradation was followed by mechanical properties reduction. The uncertainties related to the mechanical properties, thicknesses, and initial imperfections of the corroded stiffened plate were taken into account. Several initial design solutions of stiffened plates, as well as different severity levels of corrosion degradation were investigated. The results show that structural reliability significantly decreases with corrosion development, especially when in addition to the initial imperfections and corrosion plate thickness reduction, corroded plate surface roughness and the changes in the mechanical properties were considered. The uncertainties, their origins and confidence levels are discussed. It was found that non-linear time-dependent corrosion degradation accounting not only for the thickness reduction due to corrosion wastage but also the subsequent decrease of mechanical properties lead to a significant reduction in the reliability index. Additionally, it was defined that the reliability estimate is very sensitive to the uncertainties related to the initial thickness and the spread of corrosion degradation as a function of the time. Incorporating the probability of corrosion detection into the original reliability model introduces additional information about the validity of structural degradation that may lead to a higher beta reliability index estimate compared to the original model.


Author(s):  
Y Peng ◽  
P Yang

The dynamic stress intensity factors (DSIFs) for cracked stiffened plates considering the actual boundary conditions in ship structures are analyzed by the extended finite element method (XFEM). The sensitivity of numerical results with respect to mesh size and time step is discussed. Some other influential parameters including stiffener height, crack location and crack length are also analyzed. The numerical results show that the convergence is affected by mesh size and time step. By using XFEM, singular elements are not needed at the crack front and moderately refined meshes can achieve good accuracy. The height of the stiffener and crack location significantly effect DSIFs, while the crack length slightly influences the DSIFs.


2021 ◽  
Vol 241 ◽  
pp. 110083
Author(s):  
Yuelin Song ◽  
Ping Yang ◽  
Kang Hu ◽  
Wei Jiang ◽  
Genglin Zhang

2021 ◽  
pp. 297-305
Author(s):  
S.-H. Park ◽  
J.-S. Kim ◽  
S.-R. Cho ◽  
Y.-S. Jang ◽  
N.-K. Baek

Author(s):  
Coen Bakker ◽  
Lidan Zhang ◽  
Kristie Higginson ◽  
Fred van Keulen

AbstractStiffened shells and plates are widely used in engineering. Their performance is highly influenced by the arrangement, or layout, of stiffeners on the base shell or plate and the geometric features, or topology, of these stiffeners. Moreover, modular design is beneficial, since it allows for increased quality control and mass production. In this work, a method is developed that simultaneously optimizes the topology of stiffeners and their layout on a base shell or plate. This is accomplished by introducing a fixed number of modular stiffeners, which are subject to density-based topology optimization and a mapping of these modules to a ground structure. To illustrate potential applications, several stiffened plates and shell examples are presented. All examples demonstrated that the proposed method is able to generate clear topologies for any number of modules and a distinct layout of the stiffeners on the base shell or plate.


2021 ◽  
pp. 109986
Author(s):  
Wei Jiang ◽  
Ping Yang ◽  
Benyong Luo ◽  
Zhiting Xu

Sign in / Sign up

Export Citation Format

Share Document