homotopy groups
Recently Published Documents


TOTAL DOCUMENTS

717
(FIVE YEARS 59)

H-INDEX

30
(FIVE YEARS 1)

Author(s):  
Guy Boyde
Keyword(s):  

AbstractWe show that $$S^n \vee S^m$$ S n ∨ S m is $${\mathbb {Z}}/p^r$$ Z / p r -hyperbolic for all primes p and all $$r \in {\mathbb {Z}}^+$$ r ∈ Z + , provided $$n,m \ge 2$$ n , m ≥ 2 , and consequently that various spaces containing $$S^n \vee S^m$$ S n ∨ S m as a p-local retract are $${\mathbb {Z}}/p^r$$ Z / p r -hyperbolic. We then give a K-theory criterion for a suspension $$\Sigma X$$ Σ X to be p-hyperbolic, and use it to deduce that the suspension of a complex Grassmannian $$\Sigma Gr_{k,n}$$ Σ G r k , n is p-hyperbolic for all odd primes p when $$n \ge 3$$ n ≥ 3 and $$0<k<n$$ 0 < k < n . We obtain similar results for some related spaces.


Author(s):  
José Manuel Moreno Fernández

AbstractWe give a construction of the universal enveloping $$A_\infty $$ A ∞ algebra of a given $$L_\infty $$ L ∞ algebra, alternative to the already existing versions. As applications, we derive a higher homotopy algebras version of the classical Milnor-Moore theorem. This proposes a new $$A_\infty $$ A ∞ model for simply connected rational homotopy types, and uncovers a relationship between the higher order rational Whitehead products in homotopy groups and the Pontryagin-Massey products in the rational loop space homology algebra.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Write $\mathbb A$ for the 2-primary Steenrod algebra, which is the algebra of stable natural endomorphisms of the mod 2 cohomology functor on topological spaces. Working at the prime 2, computing the cohomology of $\mathbb A$ is an important problem of Algebraic topology, because it is the initial page of the Adams spectral sequence converging to stable homotopy groups of the spheres. A relatively efficient tool to describe this cohomology is the Singer algebraic transfer of rank $n$ in \cite{Singer}, which passes from a certain subquotient of a divided power algebra to the cohomology of $\mathbb A.$ Singer predicted that this transfer is a monomorphism, but this remains open for $n\geq 4.$ This short note is to verify the conjecture in the ranks 4 and 5 and some generic degrees.


Author(s):  
Javier Fernández de Bobadilla ◽  
Sonja Heinze ◽  
Maria Pe Pereira

Abstract We introduce a metric homotopy theory, which we call moderately discontinuous homotopy, designed to capture Lipschitz properties of metric singular subanalytic germs. It matches with the moderately discontinuous homology theory recently developed by the authors and E. Sampaio. The $k$-th MD homotopy group is a group $MDH^b_{\bullet }$ for any $b\in [1,\infty ]$ together with homomorphisms $MD\pi ^b\to MD\pi ^{b^{\prime}}$ for any $b\geq b^{\prime}$. We develop all its basic properties including finite presentation of the groups, long homotopy sequences of pairs, metric homotopy invariance, Seifert van Kampen Theorem, and the Hurewicz Isomorphism Theorem. We prove comparison theorems that allow to relate the metric homotopy groups with topological homotopy groups of associated spaces. For $b=1$, it recovers the homotopy groups of the tangent cone for the outer metric and of the Gromov tangent cone for the inner one. In general, for $b=\infty $, the $MD$-homotopy recovers the homotopy of the punctured germ. Hence, our invariant can be seen as an algebraic invariant interpolating the homotopy from the germ to its tangent cone. We end the paper with a full computation of our invariant for any normal surface singularity for the inner metric. We also provide a full computation of the MD-homology in the same case.


Author(s):  
Javier J. Gutiérrez ◽  
Oliver Röndigs ◽  
Markus Spitzweck ◽  
Paul Arne Østvær

AbstractMotivated by calculations of motivic homotopy groups, we give widely attained conditions under which operadic algebras and modules thereof are preserved under (co)localization functors.


2021 ◽  
Vol 272 (1333) ◽  
Author(s):  
Gijs Heuts

We construct a Goodwillie tower of categories which interpolates between the category of pointed spaces and the category of spectra. This tower of categories refines the Goodwillie tower of the identity functor in a precise sense. More generally, we construct such a tower for a large class of ∞ \infty -categories C \mathcal {C} and classify such Goodwillie towers in terms of the derivatives of the identity functor of C \mathcal {C} . As a particular application we show how this provides a model for the homotopy theory of simply-connected spaces in terms of coalgebras in spectra with Tate diagonals. Our classification of Goodwillie towers simplifies considerably in settings where the Tate cohomology of the symmetric groups vanishes. As an example we apply our methods to rational homotopy theory. Another application identifies the homotopy theory of p p -local spaces with homotopy groups in a certain finite range with the homotopy theory of certain algebras over Ching’s spectral version of the Lie operad. This is a close analogue of Quillen’s results on rational homotopy.


Author(s):  
Georg Frenck ◽  
Jan-Bernhard Kordaß

AbstractIn this paper we study spaces of Riemannian metrics with lower bounds on intermediate curvatures. We show that the spaces of metrics of positive p-curvature and k-positive Ricci curvature on a given high-dimensional $$\mathrm {Spin}$$ Spin -manifold have many non-trivial homotopy groups provided that the manifold admits such a metric.


Author(s):  
T. Nasri ◽  
H. Mirebrahimi ◽  
H. Torabi
Keyword(s):  

2021 ◽  
Vol 71 (3) ◽  
pp. 773-779
Author(s):  
Hamid Torabi

Abstract If q: X → Y is a quotient map, then, in general, q × q: X × X → Y × Y may fail to be a quotient map. In this paper, by reviewing the concept of homotopy groups and quotient maps, we find under which conditions the map q × q is a quotient map, where q: Ω n (X, x 0) → πn (X, x 0), is the natural quotient map from the nth loop space of (X, x 0), Ω n (X, x 0), with compact-open topology to the quasitopological nth homotopy group πn (X, x 0). Ultimately, using these results, we found some properties of first countable homotopy groups.


Sign in / Sign up

Export Citation Format

Share Document